

# (12) United States Patent

### Noda et al.

#### (54) METHOD FOR PRODUCTION OF CHRYSANTHEMUM PLANT HAVING **DELPHINIDIN-CONTAINING PETALS**

- (75) Inventors: Naonobu Noda, Tsukuba (JP); Ryutaro Aida, Tsukuba (JP); Sanae Sato, Tsukuba (JP); Akemi Ohmiya, Tsukuba (JP); Yoshikazu Tanaka, Osaka (JP)
- (73) Assignees: Incorporated Adminstrative Agency, **National Agriculture and Food** Research Organization, Tsukuba-shi, Ibaraki (JP); Suntory Holdings Limited, Osaka-shi, Osaka (JP)
- (\*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 713 days.
- (21) Appl. No.: 13/265,688
- (22) PCT Filed: Mar. 9, 2010
- (86) PCT No.: PCT/JP2010/053904 § 371 (c)(1), (2), (4) Date: Dec. 30, 2011
- (87) PCT Pub. No.: WO2010/122849 PCT Pub. Date: Oct. 28, 2010

#### **Prior Publication Data** (65)

US 2012/0096589 A1 Apr. 19, 2012

#### (30)**Foreign Application Priority Data**

(JP) ..... 2009-107054 Apr. 24, 2009

(51) Int. Cl.

| C12N 15/82 | (2006.01) |
|------------|-----------|
| C12N 9/02  | (2006.01) |
| A01H 5/02  | (2006.01) |

- (52) U.S. Cl. CPC ...... C12N 15/8243 (2013.01); A01H 5/0255 (2013.01); C12N 9/0071 (2013.01); C12N 15/825 (2013.01)
- (58) Field of Classification Search See application file for complete search history.

#### (56)**References** Cited

#### U.S. PATENT DOCUMENTS

| 5,948,955 | A * | 9/1999 | Holton et al.   | 800/298 |
|-----------|-----|--------|-----------------|---------|
| 6,573,429 | B1  | 6/2003 | Shinmyo et al.  |         |
| 7.105.719 | B1  | 9/2006 | Ashikari et al. |         |

#### FOREIGN PATENT DOCUMENTS

| EP | 1 652 916  | 5/2006  |
|----|------------|---------|
| ЛЬ | 2003-79372 | 3/2003  |
| ЈР | 2004-65096 | 3/2004  |
| KR | 10-0726874 | 6/2007  |
| WO | 94/28140   | 12/1994 |
| WO | 96/25500   | 8/1996  |

#### US 9.074,215 B2 (10) Patent No.: (45) Date of Patent: Jul. 7, 2015

| 01/72984    | 10/2001 |
|-------------|---------|
| 2005/017147 | 2/2005  |
| 2009/062253 | 5/2009  |

WO

WO

WO

#### OTHER PUBLICATIONS

Ukiya et al. (Constitutents of Compositae Plants. 2. Triterpene Diols, Triols, and Their 3-o-Fatty Acid Esters from Edible Chrysanthemum Flower Extract and Their Anti-inflammatory Effects, 49 J. Agric. Food Chem., 3187-3197 (2001)).\*

Y. Tanaka et al., "Genetic engineering in floriculture," Plant Cell, Tissue and Organ Culture, Kluwer Academic Publishers, DO, vol. 80, No. 1, Jan. 1, 2005, pp. 1-24.

Supplementary European Search Report issued in EP 10766908.7 dated Jan. 23, 2013.

Tanaka, Y., "Flower colour and cytochromes P450", Phytochem Rev., 2006, vol. 5, p. 283-291.

Kanno, Y., et al., "Histochemical Analysis of Gene Expression Directed by the Promoter of a Flavanone 3-Hydroxylase Gene from Dendranthema x grandiflorum in Petunia hybrida", Journal of the Japanese Soceity for Horticultural Science, 2001, vol. 70, separate vol. 2, p. 193.

Kim, Y., et al., "Identification and Characterization of Flavanone 3-Hydroxylase (F3H) Gene from Dendranthema grandiflora", J. Kor. Soc. Hort. Sci., 2002, vol. 43, p. 666-670.

Aida, R., et al. "Improved translation efficiency in chrysanthemum and torenia with a translational enhancer derived from the tobacco alcohol dehydrogenase gene", Plant Biotechnology, 2008, vol. 25, p. 69-75.

Seo, J., et al., "Co-expression of flavonoid 3', 5'-hydroxilase and flavonoid 3'-hydroxiylase Accelerates Decolorization in Transgenic Chrysanthemum Petals", 2007, vol. 50, p. 626-631.

anno, Y., et al., "Expression of Anthocyanin Biosynthetic Genes in 3 cultivars of Chrysanthemum", Journal of the Japanese Society for Horticultural Science, 2000, vol. 69, separate vol. 1, p. 355.

Tanaka, Y., et al., "Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids", The Plant Journal, 2008, vol. 54, p. 733-749

Kondo, T., et al., "Structure of Malonylshisonin, a Genuine Pigment in Purple Leaves of Perilla ocimoides L. var. crispa Benth", Agricultural Biological Chemistry, 1989, vol. 53, p. 797-800.

(Continued)

Primary Examiner - Ashwin Mehta

Assistant Examiner — Rebecca Stephens

(74) Attorney, Agent, or Firm - Drinker Biddle & Reath LLP

#### (57)ABSTRACT

Disclosed are: a method for producing a chrysanthemum plant having delphinidin-containing petals using a transcriptional regulatory region for a chrysanthemum-derived flavanone 3-hydroxylase (F3H) gene; and a chrysanthemum plant, a progeny or a vegetative proliferation product of the plant, or a part or a tissue of the plant, the progeny or the vegetative proliferation product, and particularly a petal or a cut flower of the plant. In the method for producing a chrysanthemum plant having delphinidin-containing petals, a flavonoid 3',5'-hydroxylase (F3'5'H) is caused to be expressed in a chrysanthemum plant using a transcriptional regulatory region for a chrysanthemum-derived flavanone 3-hydroxylase (F3H) gene.

#### 8 Claims, 4 Drawing Sheets

#### (56) **References Cited**

#### OTHER PUBLICATIONS

Mitsuhara, I., et al., "Efficient Promoter Cassettes for Enhanced Expression of Foreign Genes in Dicotyledonous and Monocotyledonous Plants", Plant Cell Physiology, 1996, vol. 37, p. 49-59.

Comai, L., et al., "Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS elements", Plant Molecular Biology, 1990, vol. 15, p. 373-381.

Stam, M., et al., "The Silence of Genes in Transgenic Plants", Annals of Botany, 1997, vol. 79, p. 3-12.

Nozaki, K., et al., "Effects of high temperature on flower colour and anthocyanin content in pink flower genotypes of greenhouse chrysanthemum (*Chrysanthemum morifolium* Ramat.)", Journal of Horticultural Science & Biotechnology, 2006, vol. 81, p. 728-734.

Takatsu, Y., et al., "Transgene inactivation in *Agrobacterium*-mediated chrysanthemum (*Dendranthema grandiflorum* (Ramat.) Kitamura) transformants", Plant Biotechnology, 2000, vol. 17, p. 241-245.

Aida, R., et al., "Efficient Transgene Expression in Chrysanthemum, *Dendranthema grandiflorum* (Ramat.) Kitamura, by Using the Promoter of a Gene for Chrysanthemum Chlorophyll-*a/b*-binding Protein", Breeding Science, 2004, vol. 54, p. 51-58.

Aida, R., et al., "Efficient Transgene Expression in Chrysanthemum, *Chrysanthemum morifolium* Ramat., with the Promoter of a Gene for Tobacco Elongation Factor 1  $\alpha$  Protein", Japan Agricultural Research Quarterly, 2005, vol. 39, p. 269-274.

Narumi, T., et al., "Transformation of chrysanthemum with mutated ethylene receptor genes: *mDG-ERS1* transgenes conferring reduced ethylene sensitivity and characterization of the transformants", Postharvest Biology and Technology, 2005, vol. 37, p. 101-110.

Aida, R., et al., "Chrysanthemum flower shape modification by suppression of chrysanthemum-*AGAMOUS*gene", Plant Biotechnology, 2008, vol. 25, p. 55-59. Aida, R., et al., "Improved translation efficiency in chrysanthemum and torenia with a translational enhancer derived form the tobacco *alcohol dehydrogenase* gene", Plant Biotechnology, 2008, vol. 25, p. 69-75.

Courtney-Gutterson, N., et al, "Modification of Flower Color in Florist's Chrysanthemum: Production of a White-Flowering Variety Through Molecular Genetics", Bio/Technology, Mar. 1994, vol. 12, p. 268-271.

Annadana, S., et al., "The potato *Lhca3.St.1* promoter confers high and stable transgene expression in chrysanthemum, in contrast to CaMV-based promoters", Molecular Breeding, 2001, vol. 8, p. 335-344.

Annadana, S., et al., "Cloning of the chrysanthemum *UEP1* promoter and comparative expression in florets and leaves of *Dendranthema* grandiflora", Transgenic Research, 2002, vol. 11, p. 437-445.

Gallie, D. R., et al., "The 5'-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo", Nucleic Acids Research, 1987, vol. 15, No. 8, p. 3257-3273. Kim, Y., "Identification and characterization of flavonoid 3',5'hydroxylase gene in transgenic Chrysanthemum *jawadskii*.", Plant Biology, Aug. 1997, p. 299.

Park, S. Y., et al., GenBank Accession: U86837 [online], Mar. 8, 1999. {http://www.ncbi.nlm.nih.gov/sviewer. fcgi?2801406:NCBI:994364}.

International Search Report issued on May 11, 2010 in International PCT Application No. PCT/JP2010/053904 filed Mar. 9, 2010.

Kim et al. (1994) Plant Mol. Biol. 24: 105-117.

Kanno (2002) Nat'l Agricultural Res. Center 16: 281-282.

Noda et al. (2013) Plant Cell Physiol. 54: 1684-1695.

\* cited by examiner







Fig.3



20

### METHOD FOR PRODUCTION OF CHRYSANTHEMUM PLANT HAVING DELPHINIDIN-CONTAINING PETALS

#### CROSS REFERENCE TO RELATED APPLICATIONS

This application is the National Stage of International Application No. PCT/JP2010/053904 filed Mar. 9, 2010, and claims benefit of Japanese Patent Application No. 2009-<sup>10</sup> 107054 filed Apr. 24, 2009, which are herein incorporated by reference in their entirety.

### REFERENCE TO A SEQUENCE LISTING

A Sequence Listing containing SEQ ID NOS: 1-87 is incorporated herein by reference.

#### TECHNICAL FIELD

The present invention relates to a method for producing a chrysanthemum plant containing delphinidin in the petals thereof by using the transcriptional regulatory region of chrysanthemum-derived flavanone 3-hydroxylase (F3H) gene, a nucleic acid of that regulatory region, an expression vector or <sup>25</sup> expression cassette containing that nucleic acid, and a chrysanthemum plant, progeny or vegetative proliferation product thereof, or a part or tissue thereof, and particularly a petal or cut flower thereof, in which that regulatory region has been introduced. <sup>30</sup>

#### BACKGROUND ART

The use of genetic transformation technology makes it possible to impart new traits to plants by expressing a useful 35 gene in a target plant. A wide range of genetically modified plants produced in this manner have already been cultivated. Since regulation of gene expression is mainly controlled at the level of transcription, transcriptional regulation is the most important in terms of regulating the expression of genes. 40 Namely, expressing a gene at a suitable time, in a suitable tissue and at a suitable strength is important for producing an industrially useful genetically modified plant. In many cases, transcription is control by a DNA sequence on the 5' untranslated region of a open reading frame. A region of DNA that 45 determines the starting site of gene transcription and directly regulates the frequency thereof is referred to as a promoter. A promoter is located in a start codon consisting of several tens of base pairs (bp) on the 5'-untranslated region, and frequently contains a TATA box and the like. A cis element that 50 binds various transcriptional regulatory factors is also present on the 5'-untranslated region, and the presence thereof serves to control the timing of transcription, the tissue in which transcription takes place and transcriptional strength. Transcriptional regulatory factors are classified into many families 55 according to their amino acid sequence. For example, examples of well-known families of transcriptional regulatory factors include Myb transcriptional regulatory factor and bHLH (basic helix loop helix) regulatory factor. In actuality, the terms transcriptional regulatory factor and promoter are 60 frequently used with the same meaning.

Anthocyanins, which compose the main components of flower color, are a member of secondary metabolites generically referred to as flavonoids. The color of anthocyanins is dependent on their color. Namely, the color becomes blue as 65 the number of hydroxyl groups of the B ring of anthocyanidins, which is the chromophore of anthocyanins, increases. In

addition, as the number of aromatic acyl groups (such as coumaroyl groups or caffeolyl groups) that modify the anthocyanin increases (namely, the wavelength of maximum absorbance shifts to a longer wavelength), the color of the anthocyanin becomes blue and the stability of the anthocyanin is known to increase (see Non-Patent Document 1).

Considerable research has been conducted on those enzymes and genes that encode those enzymes involved in the biosynthesis of anthocyanins (see, Non-Patent Document 1). For example, an enzyme gene that catalyzes a reaction by which an aromatic acyl group is transferred to anthocyanin is obtained from Japanese gentian, lavender and petunias (see Patent Document 1 and Patent Document 2). An enzyme gene involved in the synthesis of anthocyanin that accumulates in the leaves of red perilla (malonylshisonin, 3-0-(6-0-(E)-pcoumaroyl- $\beta$ -D-glucopyranosyl)-5-0-(6-0-malonyl- $\beta$ -D-

glucopyranosyl)-cyanidin) (see Non-Patent Document 2) has previously been reported in hydroxycinnamoyl CoA: anthocyanin-3-glucoside-aromatic acyl group transferase (3AT) gene (or more simply referred to as "shiso (perilla) anthocyanin-3-acyltransferase (3AT) gene") (see Patent Document 1). Moreover, findings have also been obtained regarding the transcriptional regulation (control) of biosynthase genes of anthocyanins. Cis element sequences bound by Myb transcriptional regulatory factor and bHLH transcriptional regulatory factor are present in the transcriptional regulatory region located on the 5'-region of the start codons of these genes. Myb transcriptional regulatory factor and bHLH transcriptional regulatory factor are known to control synthesis of anthocyanins in petunias, corn and perilla (see Non-Patent Document 1).

Promoters (also referred to as transcriptional regulatory regions) responsible for gene transcription in plants consist of so-called constitutive promoters, which function in any tissue and at any time such as in the developmental stage, organ/ tissue-specific promoters, which only function in specific organs and tissues, and time-specific promoters, which only express at a specific time of the developmental stage. Constitutive promoters are frequently used as promoters for expressing useful genes in genetically modified plants. Typical examples of constitutive promoters include cauliflower mosaic virus 35S promoter (also abbreviated as CaMV35S promoter) and promoters construction on the basis thereof (see Non-Patent Document 3), and Mac1 promoter (see Non-Patent Document 4). In plants, however, many genes are only expressed in specific tissues or organs or are expressed timespecifically. This suggests that tissue/organ-specific or timespecific expression of genes is necessary for plants. There are examples of genetic recombination of plants that utilize such tissue/organ-specific or time-specific transcriptional regulatory regions. For example, there are examples of protein being accumulated in seeds by using a seed-specific transcriptional regulatory region.

However, although plants produce flowers of various colors, there are few species capable of producing flowers of all colors due to genetic restrictions on that species. For example, there are no varieties of rose or carnation in nature that are capable of producing blue or purple flowers. This is because roses and carnations lack the flavonoid 3',5'-hydroxylase gene required to synthesize the anthocyanidin, delphinidin, which is synthesized by many species that produce blue and purple flowers. By transformation with the flavonoid 3',5'-hydroxylase gene of petunia or pansy, for example, which are specifies capable of producing blue and purple flowers, into these species, these species can be made to produce blue flowers. In the case of carnations, the transcriptional regulatory region of chalcone synthase gene derived from common snapdragon or petunia is used to transcribe flavonid 3',5'-hydroxylase gene derived from common snapdragon or petunia. Examples of plasmids containing the transcriptional regulatory region of chalcone synthase gene derived from common snapdragon or petunia include plasmids pCGP485 and pCGP653 described 5 in Patent Document 3, and examples of plasmids containing a constitutive transcriptional regulatory region include plasmid PCGP628 (containing a Mac1 promoter) and plasmid pSPB130 (containing a CaMV35S promoter to which is added E12 enhancer) described in Patent Document 4.

However, it is difficult to predict how strongly such promoters function in recombinant plants to be able to bring about a target phenotype. In addition, since repeatedly using the same promoter to express a plurality of foreign genes may cause gene silencing, it is thought that this should be avoided 15 (see Non-Patent Document 5).

Thus, although several promoters have been used to change flower color, a useful promoter corresponding to the host plant and the objective is needed in order to further change to a different flower color.

In particular, chrysanthemum plants (also simply referred to as chrysanthemums) account for about 30% of all wholesale flower sales throughout Japan (Summary of 2007 Flowering Plant Wholesale Market Survey Results, Ministry of Agriculture, Forestry and Fisheries), making these plants an 25 important product when compared with roses accounting for roughly 9% and carnations accounting for roughly 7%. Although chrysanthemums come in flower colors including white, yellow, orange, red, pink and purplish red, there are no existing varieties or closely related wild varieties that produce 30 bluish flowers such as those having a purple or blue color.

Thus, one objective of the selective breeding of bluish flowers is to stimulate new demand. Chrysanthemum flower color is expressed due to a combination of anthocyanins and carotenoids. Anthocyanins are able to express various colors 35 due to differences in the structure of the anthocyanidin serving as the basic backbone, and differences in modification by sugars and organic acids. However, there are known to be two types of anthocyanins that govern chrysanthemum flower color in which cyanidin at position 3 is modified by glucose 40 and malonic acid (cyanidin 3-0-(6"-0-monomalonyl-β-glucopyranoside and 3-0-(3",6"-0-dimalonyl-\beta-glucopyranoside) (see Non-Patent Document 6). In addition, these structures are comparatively simple (see FIG. 1). This causes the range of flower color attributable to anthocyanins in chrysan- 45 themums to be extremely narrow. However, although the expression of bluish color is primarily the result of anthocyanins, since there is no gene that encodes the key enzyme of flavonoid 3',5'-hydroxylase (F3'5'H) in chrysanthemums, delphinidin-based anthocyanin, which produces blue color, is 50 not biosynthesized in chrysanthemums (see FIG. 1). Therefore, the development of a technology has been sought for controlling the expression of chrysanthemum anthocyanins using genetic engineering techniques in order to be able to produce a chrysanthemum that produces bluish flowers by 55 modifying anthocyanin-based pigment that accumulates in chrysanthemum petals.

As was previously described, although chrysanthemums are the most important flowering plant in Japan, since they are hexaploidal resulting in high ploidy and have a large genome 60 size, in addition to having low transformation efficiency, since they may also cause silencing (deactivation) of transgenes, it is not easy to obtain genetically modified chrysanthemums capable of stable transgene expression. In chrysanthemums transformed with  $\beta$ -glucuronidase (GUS) gene 65 coupled to CaMV35S promoter, the activity of the GUS gene is roughly one-tenth that of tobacco transformed with the 4

same gene, and that activity has been reported to decrease in nearly all individuals after 12 months have elapsed following transformation (see Non-Patent Document 7). Although a promoter of a chlorophyll a/b-bound protein that favorably functions in chrysanthemums has been reported to have been obtained in order to stably express an exogenous gene in chrysanthemums, this promoter is not suitable for expressing genes in flower petals in which there is little chlorophyll present (see Non-Patent Document 8). In addition, when 10 GUS gene coupled to tobacco elongation factor 1 (EF1 $\alpha$ ) promoter is transformed into chrysanthemums, GUS gene has been reported to be expressed in leaves and petals even after the passage of 20 months or more (see Non-Patent Document 9). Moreover, there are also examples of flower life being prolonged by expressing a mutant ethylene receptor gene in chrysanthemums (see Non-Patent Document 10), flower form being changed by suppressing expression of chrysanthemum AGAMOUS gene (see Non-Patent Document 11), and expression of exogenous genes being increased 20 in chrysanthemums (see Non-Patent Document 12) by using a translation enhancer of tobacco alcohol dehydrogenase (see Patent Document 7).

On the other hand, although there have been examples of successful alteration of chrysanthemum flower color by genetic recombination, including a report of having changed pink flowers to white flowers by suppressing the chalcone synthase (CHS) gene by co-suppression (see Non-Patent Document 13), and a report of having changed white flowers to yellow flowers by suppressing carotenoid cleavage dioxy-genase (CCD4a) by RNAi (see Non-Patent Document 14), all of these methods involve alteration of flower color by suppressing expression of endogenous genes, and there have been no successful examples of altering flower color by over-expression of exogenous genes as well as no examples of having realized a change in anthocyanin structure or an accompanying change in flower color.

Although attempts to alter flower color by over-expression of an exogenous gene have been reported that involve transformation with a gene encoding F3'5'H, which is an enzyme required for synthesis of delphinidin (see Patent Document 5 and Non-Patent Document 15), the delphinidin produced due to the action of the transfected F3'5'H gene accumulates in ray petals, and there are no reports of the production of bluish chrysanthemums. In chrysanthemums, even if F3'5'H is expressed with CaMV35S promoter, production of delphinidin is not observed (see Non-Patent Document 15). In addition, expression of a gene expressed with CaMV35S promoter is unsuitable for stable expression, and for example, ends up dissipating accompanying growth of the chrysanthemum transformant (see Non-Patent Document 7). Potato Lhca3.St.1 promoter (see Non-Patent Document 16), chrysanthemum UEP1 promoter (see Non-Patent Document 17) and tobacco EF1a promoter (see Patent Document 6 and Non-Patent Document 9), for example, have been developed for use as promoters enabling efficient and stable expression of exogenous genes in the ray petals of chrysanthemums. However, there have been no reports describing alteration of chrysanthemum flower color by over-expression of an exogenous gene using these promoters. On the basis of the above, in order to produce chrysanthemums in which flower color has been altered by genetic recombination, it is necessary to establish a technology for controlling the expression of flavonoid biosynthesis genes, including the development of a promoter suitable for chrysanthemums.

Although gene expression is mainly controlled by transcriptional regulatory regions, sequences are also known that improve translation of mRNA. For example, the omega

sequence derived from tobacco mosaic virus is known to increase the translation efficiency of heterologous genes coupled to the omega sequence both in vitro and in vivo (see Non-Patent Document 18). In addition, a sequence (ADH200) present in the 5'-untranslated region of tobacco<sup>5</sup> alcohol dehydrogenase (NtADH5'UTR) is known to contribute to improved stability of the expression of heterologous genes (see Patent Document 7). In addition, in the case of coupling a 94 bp translation enhancer (ADHNF, see Patent Document 8) present downstream from this sequence to the 3'-side of CaMV35S promoter and further transformation with an expression cassette coupled with GUS gene, this sequence has been reported to contribute to increased translation efficiency in chrysanthemums (see Non-Patent Document 12). However, there are no examples of this sequence being used to change flower color by altering the structure and composition of flavonoids. Since it is necessary to express a heterologous gene in epidermal cells in which flavonoids and anthocyanins primarily accumulate in order to alter flower 20 color, it is difficult to infer from conventional results whether or not NtADH5'UTR (ADH200 or translation enhancer ADHNF) is effective for altering flower color.

#### PRIOR ART DOCUMENTS

#### Patent Documents

- Patent Document 1: WO 96/25500
- Patent Document 2: WO 01/72984
- Patent Document 3: WO 94/28140
- Patent Document 4: WO 05/17147
- Patent Document 5: U.S. Pat. No. 5,948,955
- Patent Document 6: Japanese Unexamined Patent Publication No. 2004-65096
- Patent Document 7: U.S. Pat. No. 6,573,429
- Patent Document 8: Japanese Unexamined Patent Publication No. 2003-79372

Non-Patent Documents

- Non-Patent Document 1: Plant J., 54, 737-749, 2008
- Non-Patent Document 2: Agricultural and Biological Chemistry, 53, 797-800, 1989
- Non-Patent Document 3: Plant Cell Physiology, 37, 49-59, 45 1996
- Non-Patent Document 4: Plant Molecular Biology, 15, 373-381, 1990
- Non-Patent Document 5: Annals of Botany, 79, 3-12,
- Non-Patent Document 6: Journal of Horticultural Science & 50 Biotechnology, 81, 728-734, 2006
- Non-Patent Document 7: Plant Biotechnology, 17, 241-245, 2000
- Non-Patent Document 8: Breeding Science, 54, 51-58, 2004
- Non-Patent Document 9: Japan Agricultural Research Quar- 55 terly, 39, 269-274, 2005
- Non-Patent Document 10: Postharvest Biology and Technology, 37, 101-110, 2005
- Non-Patent Document 11: Plant Biotechnology, 25, 55-59, 2008
- Non-Patent Document 12: Plant Biotechnology, 25, 69-75, 2008
- Non-Patent Document 13: Bio/Technology, 12, 268, 1994
- Non-Patent Document 14: Plant Physiology, 142, 1193, 2006
- Non-Patent Document 15: J. Plant Biol., 50, 626, 2007
- Non-Patent Document 16: Mol. Breed., 8, 335, 2001
- Non-Patent Document 17: Transgenic Res., 11, 437, 2002

Non-Patent Document 18: Nucleic Acids Research, 15, 3257-3273, 1987

#### SUMMARY OF THE INVENTION

#### Problems to be Solved by the Invention

An object to be solved by the present invention is to provide a method for producing a chrysanthemum plant containing delphinidin in the petals thereof by using the transcriptional regulatory region of chrysanthemum-derived flavanone 3-hydroxylase (F3H) gene, and a chrysanthemum plant, progeny or vegetative proliferation product thereof, or a part or tissue thereof, and particularly a petal or cut flower thereof, transformed with that regulatory region.

#### Means for Solving the Problems

As a result of conducting extensive studies to solve the aforementioned problems, the inventors of the present invention found that when flavonoid 3',5'-hydroxylase (F3'5'H) gene is expressed in chrysanthemum using a transcriptional regulatory region of flavanone 3-hydroxylase (F3H) derived from chrysanthemum, a large amount of delphinidin accumulates in the petals thereof, flower color changes, and flower color changes further due to an even larger accumulation of delphinidin as a result of adding a translational enhancer derived from tobacco alcohol dehydrogenase gene, and con-30 firmed the usefulness thereof through experimentation, thereby leading to completion of the present invention.

Namely, the present invention is as described below.

[1] A method for producing a chrysanthemum plant containing delphinidin in the petals thereof comprising the step of
 expressing flavonoid 3',5'-hydroxylase (F3'5'H) in a chrysanthemum plant using as a transcriptional regulatory region a nucleic acid selected from the group consisting of:

(1) a nucleic acid containing the nucleotide sequence indicated in SEQ ID NO. 34 or SEQ ID NO. 87;

(2) a nucleic acid able to function as a transcriptional regulatory region of flavanone 3-hydroxylase (F3H) gene derived from chrysanthemum, and containing a nucleotide sequence in which the nucleotide sequence indicated in SEQ ID NO. 34 or SEQ ID NO. 87 has been modified by addition, deletion and/or substitution of one or several nucleotides;

(3) a nucleic acid able to function as a transcriptional regulatory region of flavanone 3-hydroxylase (F3H) gene derived from chrysanthemum, and able to hybridize under highly stringent conditions with a nucleic acid composed of a nucleotide sequence complementary to the nucleotide sequence indicated in SEQ ID NO. 34 or SEQ ID NO. 87; and,

(4) a nucleic acid able to function as a transcriptional regulatory region of flavanone 3-hydroxylase (F3H) gene derived from chrysanthemum, and having sequence identity of at least 90% with the nucleotide sequence indicated in SEQ ID NO. 34 or SEQ ID NO. 87.

[2] The method described in [1] above, wherein the flavonoid 3',5'-hydroxylase (F3'5'H) is derived from bellflower (campanula), cineraria, verbena and pansy #40.

60 [3] The method described in [1] or [2] above, wherein a translational enhancer derived from tobacco alcohol dehy-drogenase gene is further used in addition to the transcriptional regulatory region.

[4] The method described in any of [1] to [3] above, whereinan expression vector or expression cassette is used in which the translational enhancer is coupled directly to a start codon of the F3'5'H gene.

40

[5] The method described in any of [1] to [4] above, wherein the content of delphinidin in the petals is 25% by weight or more of the total weight of anthocyanidins.

[6] A chrysanthemum plant, progeny thereof, or vegetative proliferation product, part or tissue thereof, containing the 5 nucleic acid described in [1] above or produced according to the method described in any of [1] to [5] above.

[7] The chrysanthemum plant, progeny thereof, or vegetative proliferation product, part of tissue thereof, described in [6] above, which is a cut flower.

[8] A cut flower processed product using the cut flower described in [7] above.

#### Effects of the Invention

According to the present invention, it was determined that when flavonoid 3',5'-hydroxylase (F3'5'H) gene is expressed in chrysanthemum using the transcriptional regulatory region of flavanone 3-hydroxylase (F3H) derived from chrysanthemum, more delphinidin accumulates in the flower petals than  $^{-20}$ in the case of using another promoter, and when the flower color becomes bluer, an even larger amount of delphinidin accumulates as a result of adding a translational enhancer derived from tobacco alcohol dehydrogenase gene, thereby causing the flower color to become even bluer.

#### BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram of the flavonoid biosynthesis pathway in transformed chrysanthemum transformed with 30 F3'5'H gene.

FIG. 2 is a schematic diagram of a binary vector for introducing F3'5'H gene.

FIG. 3 indicates the flower color and ratio of delphinidin content in transformed individuals transformed with chrysan-35 themum F3Hpro::ADHNF-bellflower F3'5'H::NOSter.

FIG. 4 indicates the construction process of pBI121 chrysanthemum F3Hpro1k::ADHNF-bellflower F3'5'H::NOSter.

#### EMBODIMENTS OF THE INVENTION

The present invention relates to a method for producing a chrysanthemum plant containing delphinidin in the petals thereof, comprising transforming chrysanthemum with a vector containing a gene cassette that causes expression of fla- 45 vonoid 3',5'-dehydroxylase (F3'5'H) by the 5'-region of a gene that encodes chrysanthemum flavanone 3-hydroxylase (F3H) (also referred to as "CmF3Hpro" or "chrysF3H5""). The gene cassette preferably contains a translational enhancer derived from tobacco alcohol dehydrogenase gene (see bottom of 50 FIG. 2). The delphinidin content in the flower petals is preferably 25% by weight or more of the total weight of anthocyanidins, and the color of the flower petals is altered towards blue. The present invention also relates to a chrysanthemum plant, progeny thereof, or vegetative proliferation product, 55 part or tissue thereof, produced according to that method or containing CmF3Hpro. The part or tissue is preferably a flower petal or cut flower.

In the present description, an "expression cassette" refers to a DNA fragment in which a promoter and a terminator are 60 coupled to arbitrary nucleic acids.

According to the present invention, since F3'5'H gene is expressed in ray petals of chrysanthemum, and that enzyme protein is synthesized and functions, a chrysanthemum having a bluish flower color can be produced by allowing del- 65 phinidin-based anthocyanin to be synthesized and accumulate. Although accumulation of delphinidin (max. 5.4%) was

8

confirmed in the case of using RoseCHSpro (rose chalcone synthase (CHS) gene promoter), R. rugosa DFRpro (Rugosa rose dihydroflavonol-4-reductase (DFR) gene promoter), R. rugosa F3Hpro (R. rugosa flavanone 3-hydroxylase (F3H)) or Viola F3'5'H#40pro (pansy F3'5'H gene promoter) for the promoter contained in the gene cassette used to express F3'5'H (see Table 1), this did not lead to flower color becoming bluish. Therefore, as a result of repeatedly conducting expression experiments on F3'5'H using various types of promoters in order to discover an effective promoter for enhancing accumulation of delphinidin in chrysanthemum flower petals and making flower color bluish, CmF3Hpro was determined to be an effective promoter. The use of CmF3Hpro made it possible to improve accumulation of delphinidin in comparison with the case of using other promoters (see Table 1, mean: 31.4%, max.: 80.5%), and led to the attaining of bluish flower color (see FIG. 3, RHS color chart 79A, 77A, 72A and 72B). In addition, within the F3'5'H gene expressed by CmF3Hpro, F3'5'H derived from bellflower (delphinidin accumulation rate: max. 81%), cineraria (delphinidin accumulation rate: max. 36%), verbena and pansy (delphinidin accumulation rate: max. 27% to 28%) were found to have the ability to change chrysanthemum flower color to purple. Moreover, transformation with a gene cassette directly coupled with tobacco ADH translational enhancer (see Patent Document 8) was successful in altering flower color by enabling anthocyanin having delphinidin for the basic backbone thereof to be efficiently accumulated in ray petals of chrysanthemum (see Table 1, FIG. 3). Furthermore, direct coupling refers to coupling without containing a surplus nucleic acid sequence between one polynucleotide and another polynucleotide.

An example of a transcriptional regulatory region according to the present invention is a nucleic acid composed of a nucleotide sequence indicated in SEQ ID NO. 34 or SEQ ID NO. 87. However, a promoter composed of a base sequence in which several (1, 2, 3, 4, 5, 6, 7, 8, 9 or 10) nucleotides has been added, deleted and/or substituted in a nucleic acid composed of a nucleotide sequence indicated in SEQ ID NO. 34 or SEQ ID NO. 87 is also thought to maintain activity similar to that of the original promoter. Thus, the transcriptional regulatory region according to the present invention can also be a nucleic acid composed of a nucleotide sequence in which one or several nucleotides have been added, deleted and/or substituted in the nucleotide sequence indicated in SEQ ID NO. 34 or SEQ ID NO. 87 provided the nucleic acid is able to function as a transcriptional regulatory region of flavanone 3-hydroxylase (F3H) gene derived from chrysanthemum.

The transcriptional regulatory region according to the present invention can also be a nucleic acid able to function as a transcriptional regulatory region of flavanone 3-hydroxylase (F3H) gene derived from chrysanthemum and able to hybridize under highly stringent conditions with the nucleotide sequence indicated in SEQ ID NO. 34 or SEQ ID NO. 87, or a nucleic acid able to function as a transcriptional regulatory region of flavanone 3-hydroxylase (F3H) gene derived from chrysanthemum and has sequence identity of at least 90% with the nucleotide sequence indicated in SEQ ID NO. 34 or SEQ ID NO. 87.

Examples of these nucleic acids include nucleic acids composed of nucleotide sequences having sequence identity with the nucleotide sequence indicated in SEQ ID NO. 34 of preferably about 70% or more, more preferably about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97% or 98%, and most preferably about 99%.

45

Here, stringent conditions refer to hybridization conditions easily determined by a person with ordinary skill in the art that determined empirically typically dependent on probe length, washing temperature and salt concentration. In general, the temperature for suitable annealing becomes higher 5 the longer the probe, and the temperature becomes lower the shorter the probe. Hybridization is generally dependent on the ability of denatured DNA to anneal in the case a complementary strand is present in an environment at a temperature close to or below the melting temperature thereof. More specifically, an example of lowly stringent conditions consists of washing and so forth in 0.1% SDS solution at 5×SSC under temperature conditions of 37° C. to 42° C. in the filter washing stage following hybridization. In addition, an example of highly stringent conditions consists of washing and so forth in 0.1% SDS at 0.1×SSC and 65° C. in the washing stage. The use of more highly stringent conditions makes it possible to obtain polynucleotides having higher homology or identity.

In the present invention, the flavonoid 3',5'-hydroxylase 20 (F3'5'H) gene is preferably derived from bellflower (campanula), cineraria, verbena or pansy #40. In the present invention, a translation enhancer derived from tobacco alcohol dehydrogenase is preferably further used in addition to the transcriptional regulatory region. In addition, the translation <sup>25</sup> enhancer is preferably directly coupled to a start codon of the F3'5'H gene in a gene cassette of an expression vector.

In the method of the present invention, the delphinidin content in the flower petals is preferably 25% by weight or more of the total weight of anthocyanidins.

The present invention is a chrysanthemum plant, progeny thereof, or vegetative proliferation product, part or tissue thereof, produced according to the method of the present invention or transformed with the aforementioned nucleic acid, and is preferably a flower petal or cut flower.

The present invention also relates to a processed product that uses the aforementioned cut flower (cut flower processed product). Here, a cut flower processed product includes, but is not limited to, a pressed flower, preserved flower, dry flower or resin-sealed product obtained by using the cut flower.

#### EXAMPLES

The following provides a detailed explanation of the present invention through examples thereof.

Molecular biological techniques were carried out in accordance with Molecular Cloning (Sambrook and Russell, 2001) unless specifically indicated otherwise.

The following Reference Examples 1 to 9 are examples of using a promoter other than the 5'-region of a gene encoding 50 flavanone 3-hydroxylase (F3H) of chrysanthemum (CmF3Hpro), while on the other hand, Examples 1 to 10 are examples relating to the 5'-region of a gene encoding flavanone 3-hydroxylase (F3H) of chrysanthemum (CmF3Hpro). 55

#### Reference Example 1

#### Expression of F3'5'H Gene by Tobacco EF1a Promoter

pBIEF1α described in Patent Document 6 was digested with restrictases HindIII and BamHI to obtain a roughly 1.2 kb DNA fragment containing a promoter sequence of tobacco EF1α. This DNA fragment was inserted into the 5'-side of iris 65 DFR cDNA of pSPB909 described in Patent Document 4 to obtain a plasmid pSLF339. A plasmid pSLF340 was similarly

constructed in which petunia DFR cDNA (described in International Publication WO 96/36716) was inserted instead of iris DFR cDNA.

A plasmid obtained by inserting a BP40 fragment of pansy F3'5'H gene, excised by partial digestion with BamHI and XhoI from pCGP1961 described in Patent Document 4, into BamHI and SaII sites of pSPB176 (described in Plant Science, 163, 253-263, 2002) was designated pSPB575. The promoter portion of this plasmid was replaced with the promoter of the aforementioned tobacco EF1 $\alpha$  using HindIII and BamHI to obtain pSLF338. A fragment containing iris DFR cDNA was inserted into pSLF339 digested with AscI at this AscI site. The resulting plasmid was designated pSLF346. This plasmid pSLF346 is designed to express pansy F3'5'H and iris DFR genes in plants under the control of the promoter of tobacco EF1 $\alpha$ .

Plasmid pLHF8 containing lavender F3'5'H cDNA is described in International Publication WO 04/20637. Plasmid pSPB2772 was obtained by coupling this plasmid to the DNA fragment having the higher molecular weight among a DNA fragment obtained by digesting this plasmid with BamHI and XhoI and a DNA fragment of pSPB176 obtained by digesting with BamHI and SaII. In this plasmid, lavenderderived F3'5'H cDNA is coupled to CaMV35S promoter to which has been added E12 enhancer. This promoter portion was replaced with the aforementioned promoter of tobacco EF1α using HindIII and BamHI to obtain plasmid pSPB2778. A fragment containing petunia DFR cDNA within pSFL340 digested with AscI was inserted into this AscI site. The resulting plasmid was designated pSPB2780. This plasmid pSPB2780 is designed so as to express lavender F3'5'H and petunia DFR genes in plants under the control of tobacco EF1 $\alpha$  promoter.

Plasmid pSPB2777 was obtained by replacing the promoter portion of plasmid pSPB748 described in Plant Biotechnol., 23, 5-11 (2006) (in which butterfly pea-derived F3'5'H cDNA is coupled to CaMV35S promoter to which has been added E12 enhancer) with the aforementioned promoter of tobacco EF1 $\alpha$  using HindIII and BamHI. A fragment of pSLF340 digested with AscI containing petunia DFR cDNA was inserted into this AscI site. The resulting plasmid was designated pSPB2779. This plasmid pSPB2779 is designed to express butterfly pea F3'5'H and petunia DFR genes in plants under the control of the promoter of tobacco EF1 $\alpha$ .

Each of the aforementioned plasmids pSFL346, pSPB2780 and pSPB2779 were transformed into *Agrobacte-rium* and then transfected into chrysanthemum variety 94-765 using this transformed *Agrobacterium*. Although anthocyanidins in flower petals of the transformed chrysanthemum were analyzed, delphinidin was not detected.

#### Reference Example 2

#### Chrysanthemum Transfected with Cineraria F3'5'H Gene Promoter

RNA was extracted based on an established method from the petals of a bud of blue Cineraria Senetti (Suntory Flowers Ltd.). A cDNA library was produced using the ZAP-cDNA®
Library Construction Kit (Stratagene Corp., Catalog No. 200450) in accordance with the method recommended by the manufacturer using poly-A+RNA prepared from this RNA. This cDNA library was then screened using butterfly pea F3'5'H cDNA (Clitoria ternatea, see Plant Biotechnology, 23, 5-11 (2006)) labeled with the DIG System (Roche Applied Science) according to the method recommended by the manufacturer. Forty eight phages indicating signal were iso-

45

50

lated. Plasmids were obtained from these phages by in vivo excision according to the method recommended by the manufacturer (Stratagene).

The nucleotide sequences of the cDNA portions contained in these plasmids were determined, a Blast search was made 5 of DNA databases, numerous genes were obtained that demonstrated homology with cytochrome P450, and these genes were able to be classified into 8 types. Among these, the entire nucleotide sequence of Ci5a18 (SEQ ID NO. 77), which was presumed to be classified as CYP75B, was determined. A pBluescript SKII-plasmid containing this sequence was designated pSPB2774.

Chromosomal DNA was extracted from a leaf of the same Cineraria, and a chromosome library was produced using the λBlueSTAR<sup>™</sup> Xho I Half-Site Arms Kit (Novagen, on the Internet at merckbiosciences.com/product/69242). The resulting 200,000 plaques were screened using a Ci5a18 cDNA fragment labeled with DIG. This cDNA fragment was amplified using Ci5a18 as template and using primers 20 Ci5a18F1 (SEQ ID NO. 81: 5'-CATCTGTTTTCTGC-CAAAGC-3') and Ci5a18R1 (SEQ ID NO. 82: 5'-GGATT-AGGAAACGACCAGG-3'). Four plaques were ultimately obtained from the resulting 17 plaques, and these were converted to plasmids by in vivo excision. When their DNA 25 nucleotide sequences were determined, they were found to contain the same sequences. Among these, a clone designated gCi01-pBluestar was used in subsequent experiments. The cloned nucleotide sequence of gCi01-pBluestar is shown in SEQ ID NO. 79. This sequence was expected to contain a 30 5'-untranslated containing a sequence having promoter activity of cineraria F3'5'H, a translated region, and a 3'-untranslated region.

A roughly 5.7 kb DNA fragment excised from gCi01pBluestar with PvuI and EcoRV (SEQ ID NO. 80) was 35 blunted using a DNA blunting kit (Takara). This DNA fragment was then cloned into the SmaI site of pBinPLUS and designated pSPB3130. This binary vector had an nptII gene able to be used to screen the T-DNA region with kanamycin.

pSPB3130 was transformed into chrysanthemum variety 40 94-765 using an Agrobacterium method. Although anthocyanidins in the petals of the transformed chrysanthemum were analyzed, delphinidin was not detected and flower color did not change.

#### Reference Example 3

#### Production of Delphinidin Using Rose Chalcone Synthase Gene Promoter

A binary vector was constructed in which pansy-derived F3'5'H BP#18 gene was coupled to a rose-derived chalcone synthase promoter described in PCT International Patent Publication No. PCT/AU03/01111, and this binary vector was designated pBRBP18. The gene contained in this binary 55 vector was transformed into chrysanthemum variety 94-765 as described in Reference Examples 1 and 2. When anthocyanidins in the flower petals of the transformed chrysanthemum were analyzed, although a maximum of 5.4% of delphinidin was detected with respect to all anthocyanidins, there was no 60 tion. change in flower color observed.

In addition, pSPB3325 (rose CHSpro::pansy #18+rose CHSp:: chrysanthemum F3'H IR) described in the ninth row from the top in Table 1 is an example of the production of delphinidin using rose chalcone synthase gene promoter, and 65 delphinidin production in this example reached a maximum of 3.6%.

#### Reference Example 4

Production of Delphinidin Using Pansy F3'5'H Gene Promoter

#### (1) Cloning of Perilla Anthocyanin 3-Acyl Transferase Chromosome Gene

There are known to be red varieties of perilla in which anthocyanins accumulate in the leaves and green varieties in which they do not. Chromosomal DNA from the leaves of the former was prepared using a reported method (Plant Mol. Biol., December 1997, 35(6), 915-927). This chromosomal DNA was partially decomposed with Sau3AI (Toyobo), and a fraction containing a 10 kb to 15 kb DNA fragment was recovered using a sucrose density gradient method. This fragment was then inserted into the BamHI site of EMBL3 (Promega), a type of lambda phage vector, using a known method to prepare a genomic DNA library. The resulting library was screened using pSAT208 (see Plant Cell Physiol., April 2000, 41(4), 495-502), which is cDNA of anthocyanin 3-acyl transferase derived from perilla, as a probe. Screening of the library was in accordance with a previously reported method (Plant Cell Physiol., July 1996, 37(5), 711-716). Plaques that hybridized with the probe were blunted and cultured, and DNA was prepared from the resulting phage.

(2) Determination of Nucleotide Sequence of Perilla Anthocyanin 3-Acyl Transferase Chromosome Gene

10 µg of the DNA obtained above were digested with XbaI and isolated with 0.7% agarose gel followed by blotting onto Hybond-N (Amersham). When this film was hybridized in the same manner as previously described, a roughly 6.8 kb DNA fragment was found to hybridize with the probe. After digesting 20 µg of the same DNA with XbaI and isolating with 0.7% agarose gel, a roughly 6.8 kb DNA fragment was purified using a GeneClean Kit and coupled with pBluescript SKII-digested with XbaI. The resulting plasmid was designated pSPB513. The DNA sequence derived from perilla contained in this plasmid was determined by primer walking. The nucleotide sequence thereof is shown in SEQ ID NO. 4. This sequence contains a region that demonstrates high homology with anthocyanin 3-acyltransferase cDNA in the form of pSAT208, the amino acid sequence (SEQ ID NO. 6) of protein encoded by this region was observed to demonstrate substitution of 19 amino acid residues and deletion of 2 amino acid residues in comparison with the amino acid sequence encoded by pSAT208, and there were no introns observed. In addition, the sequence of the region demonstrating high homology with pSAT208 contained a 3438 bp sequence upstream from ATG that was thought to be the start codon, and a 2052 bp sequence downstream from TAA that was thought to be the stop codon thereof. A different open reading frame (ORF, SEQ ID NO. 5), which was not anthocyanin 3-acyltransferase, was present in the aforementioned 3438 bp sequence. The following experiment was conducted to amplify the transcriptional regulatory region of shiso (perilla) anthocyanin 3-acyl transferase gene, excluding this por-

#### (3) Amplification of Transcriptional Regulatory Region of Shiso Anthocyanin 3-Acyltransferase Gene

PCR (25 cycles of a reaction consisting of holding for 1 minute at 95° C., 1 minute at 52° C., 2 minutes at 72° C. and 1 minute at 95° C.) was carried out using 1 ng of pSPB513 as template and two types of primers (5'-<u>AAGCTTAACTATTATGATCCCACAGAG-3'</u> (SEQ ID NO. 7, underline indicates HindIII recognition sequence) and 5'-<u>GGATCCGGCGGTGTTGAACGTAGC-3'</u> (SEQ ID NO. 5 8, underline indicates BamHI recognition sequence)). The amplified roughly 1.1 kb DNA fragment was digested with HindIII and BamHI.

The plasmid pSPB567 described in Patent Document 4 (in which pansy-derived flavonoid 3',5'-hydroxylase gene is 10 coupled to the 3'-side of cauliflower mosaic 35S promoter to which has been added E12 enhancer, and in which a nopaline synthase terminator is further coupled to the 3'-side thereof) was digested with PacI, and a DNA fragment containing pansy-derived flavonoid 3',5'-hydroxylase gene was cloned into the Pad site of pBin+. A plasmid in which the cauliflower mosaic 35S promoter to which E12 enhancer was added is present close to the AscI site of pBin+ in the resulting plasmid was designated pSPB575. This plasmid was then digested with HindIII and BamHI, and a DNA fragment obtained by 20 digesting a roughly 1.1 kb DNA fragment containing the transcriptional regulatory region of perilla anthocyanin 3-acyltransferase with HindIII and BamHI was inserted therein. The resulting plasmid was designated pSFL205.

Plasmid pSFL205 was digested with HindIII and SacI, and <sup>25</sup> a roughly 100 bp DNA fragment was recovered. This DNA fragment, a roughly 4 kb DNA fragment obtained by digesting pSPB513 with SacI and XbaI, and a plasmid pBin+(see Transgenic Research, 4, 288-290, 1995) digested with HindIII and XbaI were coupled to obtain plasmid pSPB3311. <sup>30</sup> This plasmid pSPB3311 is a binary vector that contains the nucleotide sequence indicated in SEQ ID NO. 2, and contains the transcriptional regulatory region of perilla anthocyanin 3-acyltransferase gene and an untranslated region of the 3'-side thereof. <sup>35</sup>

#### (4) Construction of pSPB3323

The transcriptional regulatory region of pansy flavonoid 3',5'-hydroxylase gene BP#40 (see WO 04/020637) was 40 amplified as described below using the Takara LA PCR<sup>™</sup> In Vitro Cloning Kit.

Chromosomal DNA was prepared from a pansy leaf using the DNA Easy Plant Kit (Qiagen). 3 µg of the chromosomal DNA were digested with restriction enzyme HindIII. The 45 digested DNA was coupled with HindIII terminal DNA (included in Takara LA PCR<sup>™</sup> In Vitro Cloning Kit) by reacting for 40 minutes at 16° C. using Ligation High (Takara). After diluting 4  $\mu$ l of the reaction mixture with 10  $\mu$ l of water and denaturing the coupled DNA by treating for 10 minutes at 94° 50 C., the reaction mixture was cooled in ice. 5 pmol of primer (5'-GTACATATTGTCGTTAGAACGCG-C1TAATACGACTCA-3', SEQ ID NO. 9, included in the kit as a partial sequence of HindIII cassette sequence) and 5 pmol of primer BP40-i5 (5'-AGGTGCATGATCGGACCATACTTC- 55 3', SEQ ID NO. 10, equivalent to complementary strand of translated region of BP#40) were then added followed by repeating 30 cycles of a reaction in 25 µl of the reaction mixture consisting of 20 seconds at 98° C. and 15 minutes at 68° C. in accordance with the kit protocol. The reaction 60 mixture was then diluted 10-fold with water. After reacting for 5 minutes at 98° C. in 25 of a reaction mixture containing 5 pmol of primer C2 (5'-CGTTAGAACGCGTAATAC-GACTCACTATAGGGAGA-3', SEQ ID NO. 11, included in kit as partial sequence of HindIII cassette sequence) and 5 pmol of primer BP40-i7 (5'-GACCATACTTCTTAGC-GAGTTTGGC-3', SEQ ID NO. 12) using 0.5 µl of this dilu14

tion as template, 30 cycles of a reaction were repeated consisting of reacting for 20 seconds at  $98^{\circ}$  C. and 15 minutes at  $68^{\circ}$  C.

The resulting DNA fragment was ligated into plasmid pCR2.1 (Invitrogen). When the nucleotide sequence of the resulting DNA was determined, the sequence was observed to have locations that did not coincide with the cDNA nucleotide sequence of BP#40. This is thought to be due to the occurrence of an error during PCR. The following procedure was carried out for the purpose of amplifying an error-free sequence.

In order to amplify a roughly 2 kb 5'-untranslated region and a 200 bp translated region of BP#40, PCR was carried out in 25  $\mu$ l of a reaction mixture using 200 ng of pansy genomic DNA as template and using 50 pmol of primer BP40-i7 (SEQ ID NO. 12) and 50 pmol of primer BP40 pro-F (5'-ACT-CAAACAAGCATCTCGCCATAGG-3', SEQ ID NO. 3, sequence in 5'-untranslated region of BP#40 gene). After treating for 5 minutes at 98° C., a reaction consisting of 20 seconds at 98° C. and 15 minutes at 68° C. was repeated for 30 cycles. The amplified DNA fragment was inserted into pCR2.1. This DNA fragment contained a roughly 2.1 kbp 5'-untranslated region and a 200 bp translated region. This plasmid was designated pSFL614. The nucleotide sequence of plasmid pSFL614 is shown in SEQ ID NO. 14.

The roughly 2.1 bp 5'-untranslated region (BP40pro, SEQ ID NO. 15) contained in pSFL614 was used to transcribe BP#40 gene. At this time, the BamHI site was changed to NheI. After using 1 ng of pSFL614 as template, adding 50 pmol of primer BP40pro-HindIII-F (5'-AAG CTT GTG ATC GAC ATC TCT CTC C-3', SEQ ID NO. 16), 50 pmol of primer BP40pro-NehI-R (5'-CGA GGC TAG CTA AAC ACT TAT-3', SEQ ID NO. 17), and holding for 5 minutes at 98° C. 35 in 25  $\mu$ l of the reaction mixture, a reaction consisting of 20 seconds at 98° C. and 15 minutes at 68° C. was repeated for 25 cycles. The amplified DNA fragment was cloned into pCR2.1. This sequence was determined to be free of errors attributable to PCR by confirming the nucleotide sequence thereof. This plasmid was then digested with HindIII and NheI to obtain a 470 bp DNA fragment. This DNA fragment was designated fragment A.

After using 1 ng of pSLF614 as template, adding 50 pmol of primer BP40pro-NehI-F (5'-TTT AGC TAG CCT CGA AGT TG-3', SEQ ID NO. 18) and 50 pmol of primer BP40pro-BamHI-R (5'-GGA TCC CTA TGT TGA GAA AAA GGG ACT-3', SEQ ID NO. 19) and Ex-Taq DNA polymerase, and holding for 5 minutes at 98° C. in 25 µl of the reaction mixture, a reaction consisting of 20 seconds at 98° C. and 15 minutes at 68° C. was repeated for 25 cycles. The amplified DNA fragment was cloned into pCR2.1. This sequence was determined to be free of errors attributable to PCR by confirming the nucleotide sequence thereof. This plasmid was then digested with HindIII and NheI to obtain a 630 bp DNA fragment. This DNA fragment was designated fragment B.

The larger fragment of DNA fragments formed by digesting plasmid pSPB567 described in Patent Document 4 with HindIII and NheI was recovered, and coupled with the aforementioned fragment A and fragment B to obtain pSFL620.

After digesting pSFL620 with PacI, a roughly 3.2 kb DNA fragment was recovered. This DNA fragment was inserted into the Pad site of pBin+. The resulting plasmid was designated pSBP3317. A fragment obtained by digesting the aforementioned pSPB3311 with AscI and XbaI was cloned into the AscI and XbaI sites of pSBP3317, and the resulting plasmid was designated pSPB3323.

#### (5) Expression of Perilla Anthocyanin 3-Acyl Transferase Genomic Gene and Pansy F3'5'H Gene in Chrysanthemum

The pSPB3323 prepared in (4) above was introduced into <sup>5</sup> *Agrobacterium* and chrysanthemum variety 94-765 (Seikoen, not sold) was transformed according to a known method using this *Agrobacterium*. Six transformed strains were acquired.

Anthocyanidins extracted according to the method described below were analyzed. Ray petals were frozen and then crushed followed by extracting 50 mg to 100 mg of the crushed petal with 500 µL of 1% hydrogen chloride-methanol, adding 500 µL of 4 N hydrochloric acid (HCl) to this extract and mixing, and hydrolyzing for 1 hour at 100° C. After cooling the solution following hydrolysis, 1 ml of 0.05 M trifluoroacetic acid (TFA) was added and mixed therein. Next, this solution was added to Sep-Pak C18 (Millipore) to adsorb the hydrolysis product. The Sep-Pak C18 was prelimi- 20 narily washed with 80% acetonitrile (MeCN) and equilibrated with 0.05 M TFA. After washing the hydrolysis product adsorbed to the Sep-Pak C18 with 0.05 M TFA, the hydrolysis product was further washed with 20% MeCN and 0.05 M TFA followed by eluting the hydrolysis product with 25 80% MeCN and 0.05 M TFA to obtain an analysis sample.

The analysis sample was analyzed under the following conditions using high-performance liquid chromatography. An Inertsil ODS-2 column (particle diameter:  $5 \,\mu$ m,  $4.6 \times 250 \,$ mm, GL Sciences) was used for the column, the flow rate was <sup>30</sup> 0.8 ml/min, the mobile phase contained 1.5% phosphoric acid, and isocratic elution was carried out for 20 minutes using a linear concentration gradient from 5% acetic acid and 6.25% acetonitrile to 20% acetic acid and 25% acetonitrile, followed by eluting for 5 minutes with 25% acetonitrile con-<sup>35</sup> taining 1.5% phosphoric acid and 20% acetic acid. Detection was carried out using the Agilent 1100 Series Diode Array Detector (GL Sciences) over a wavelength region of 250 nm to 600 nm, and the abundance ratios of each of the anthocyanidins was determined according to the area of optical absor-<sup>40</sup> bance at 530 nm.

As a result of analysis, delphinidin was detected at ratios of 0.9%, 0.8%, 1.4% and 0.6% of the total amount of anthocyanidins in transformants consisting of analyzed strains 1300-3, 1300-4, 1300-5 and 1300-6, respectively. Although this suggests that BP#40 transcriptional regulatory region of pansy governs transcription of BP#40, this did not lead to a change in flower color.

#### Reference Example 5

#### Production of Delphinidin in Chrysanthemum Using Rugosa Rose DFR Promoter

A Rugosa rose Genomic DNA library was prepared in the 55 manner described below using the  $\lambda$ BlueSTAR<sup>TM</sup> Xho I Half-Site Arms Kit (Novagen, on the Internet at merckbioscienc-es.com/product/69242). Chromosomal DNA was prepared from a young leaf of Rugosa rose using Nucleon Phytopure<sup>TM</sup> (Tepnel Life Sciences). Roughly 100 µg of chromosomal 60 DNA was digested with restriction enzyme Sau3AI.

This DNA fragment was then partially filled in with DNA polymerase I Klenow fragment (Toyobo) in the presence of dGTP and dATP, and fractionated by sucrose density gradient centrifugation. DNA of about 13 kb was recovered and con- $_{65}$  centrated by ethanol precipitation. Roughly 180 ng of DNA were ligated for 15 hours at 4° C. with 1 µL of the  $\lambda$ Blue-

STAR™ Xho I Half-Site Arms Kit, followed by carrying out in vitro packaging to obtain a genomic library.

This library was screened using cultivated rose DFR cDNA (Plant and Cell Physiology, 36, 1023-1031, 1995) to obtain plaque indicating a signal. Plasmid pSFK710 was obtained by in vivo excision from this plaque using the method recommended by the manufacturer (Novagen). This plasmid contained a DNA sequence that closely coincided with the aforementioned cultivated rose DFR cDNA.

By carrying out PCR so as to obtain a 5'-untranslated region of a DFR translated sequence from this plasmid and facilitate coupling with heterologous genes, one of the EcoRI recognition sequences was mutated to an NheI recognition sequence followed by the addition of HindIII and BamHI recognition sequences. First, PCR was carried out in 50 µL of the reaction mixture using pSLF710 as template, using 25 pmol each of primers DFRproHindIIIF (5'-TAATAAGCT-TACAGTGTAATTATC-3', SEQ ID NO. 20) and DFRproNheIR (5'-TTATGCTAGCGTGTCAAGACCAC-3', SEQ ID NO. 21), and using enzyme ExTaq DNA Polymerase (Tovobo). The PCR reaction conditions consisted of reacting for 5 minutes at 94° C. followed by repeating 30 cycles of a reaction of which one cycle consists of reacting for 30 seconds at 94° C., 30 seconds at 50° C. and 30 seconds at 72° C., and finally holding for 7 minutes at 72° C. As a result, a roughly 350 bp DNA fragment A was obtained. Similarly, a PCR reaction was carried out in  $50 \,\mu\text{L}$  of the reaction mixture using pSFL710 as template, using 25 pmol each of primers DFRproNheIF (5'-ACACGCTAGCATAAGTCTGTTG-3', SEQ ID NO. 22) and DFRproBamHI-R (5'-GCTTGGG-GATCCATCTTAGG-3', SEQ ID NO. 23), and using enzyme ExTaq DNA Polymerase (Toyobo). The PCR reaction conditions consisted of reacting for 5 minutes at 94° C. followed by repeating 30 cycles of a reaction of which one cycle consists of reacting for 30 seconds at 94° C., 30 seconds at 50° C. and 30 seconds at 72° C., and finally holding for 7 minutes at 72° C. As a result, a 600 bp DNA fragment B was obtained.

The pSPB567 described in Patent Document 4 (plasmid pUC containing CaMV35S promoter to which has been added E12 enhancer, pansy F3'5'HBP#40 and nopaline synthase terminator) was digested with BamHI and then partially digested with HindIII to couple fragment A with a fragment digested with HindIII and NheI and couple fragment B with a fragment digested with NheI and BamHI and obtain plasmid pSLF721 (containing an expression cassette of R. rugosa DFR 5':BPF3'5'H#40:nos3'. An expression cassette obtained by digesting this plasmid with Pad was introduced into the Pad site of pBinPLUS to obtain pSLF724. This plasmid was then transfected into *Agrobacterium tumefaciens* strain EHA105.

A recombinant chrysanthemum was obtained from variety 94-765 using this transformed *Agrobacterium*. The resulting strain produced delphinidin in the flower petals thereof at about 0.6% of the total amount of anthocyanidins.

In addition, other reference examples using Rugosa rose DFR promoter are shown in the second row from the top (pSPB3316 (Rugosa rose DFRpro:pansy #40+rose ANSpro: torenia 5GT, non-delphinidin-producing strain) and in the fifth row from the top (Rugosa rose DFRpro:pansy #40+Japanese gentian 3'GTpro::torenia MT, maximum delphinidin production level: 0.9%) of Table 1. Neither of these reference examples resulted in a change in flower color.

#### Reference Example 6

#### Production of Delphinidin in Chrysanthemum Using Rugosa Rose F3H Promoter

The Rugosa rose genomic DNA library produced in Reference Example 5 was screened with torenia flavanone 3-hy-

35

droxylase (F3H) cDNA (NCBI No. AB211958) to obtain plaques indicating signals. One of these plaques was converted to a plasmid in the same manner as Reference Example 5. This was then digested with restriction enzyme SpeI to recover a 2.6 kb DNA fragment, and plasmid pSPB804 was 5 obtained by sub-cloning this DNA fragment to the SpeI site of pBluescript SKII-(Stratagene). This plasmid had a nucleotide sequence that demonstrates homology with F3H.

In order to amplify the 5'-untranslated region of F3H, PCR was carried out in 50 µL of a reaction mixture by using 1 ng of pSPB804 as template, using primer RrF3H-F (5'-AAGCT-TCTAGTTAGACAAAAAGCTA-3', SEQ ID NO. 24) and primer RrF3H (5'-GGATCCTCTCTTGATATTTCCGTTC-3', SEQ ID NO. 25), and using Ex-Taq DNA Polymerase (Toyobo). PCR reaction conditions consisted of reacting for 5 minutes at 94° C., repeating 30 cycles of reaction of which one cycle consisted of 30 seconds at 94° C., 30 seconds at 50° C. and 30 seconds at 72° C., and finally holding for 7 minutes at 72° C. The resulting DNA fragment was inserted into 20 pCR-TOPO (Invitrogen) to obtain plasmid pSPB811. A roughly 2.1 kb F3H 5'-untranslated region was able to be recovered from this plasmid using HindIII and BamHI. Plasmid pSFL814 (containing R. rugosa F3H 5':BFP3'5'#40:nos 3') was obtained by substituting the promoter portion of <sup>25</sup> chrysanthemum variety 94-765 were obtained using this pSPB567 with the roughly 1.2 kb 5'-untranslated region of F3H using HindIII and BamHI as described in Reference Example 5. This plasmid was intoduced into Agrobacterium tumefaciens strain EHA105.

Although three strains of recombinant chrysanthemum 30 were obtained from variety 94-765 using this transformed Agrobacterium, there were no strains in which production of delphinidin was observed in the flower petals (see Table 1).

Reference Example 7

Production of pBINPLUS Rugosa Rose F3Hpro:ADHNF-Pansy-F3'5'H#40::NOSter

A DNA fragment amplified by PCR using pSLF814 (Reference Example 6) as template and using ADH-BP40-Fd (5'-CAAGAAAAATAAATGGCAATTCTAGTCACCGAC-3', SEQ ID NO. 26) and NcoI-BP40-Rv (5'-CTCGAGCG-TACGTGAGCATC-3', SEQ ID NO. 27) as primers, and a 45 DNA fragment amplified by PCR using pB1221 ADH-221 as template and using BamHI-ADH-Fd (5'-CGCGGATC-CGTCTATTTAACTCAGTATTC-3', SEQ ID NO. 28) and (5'-TAGAATTGCCATTTATTTTTCT-**BP40-ADH-Rv** TGATTTCCTTCAC-3', SEQ ID NO. 29) as primers were 50 mixed, and a DNA fragment in which tobacco ADH-5'UTR 94 bp was directly coupled to the start codon of pansy F3'5'H#40 was obtained by PCR using this mixture of DNA fragments as template and using BamHI-ADH-Fd (5'-CGCGGATCCGTCTATTTAACTCAGTATTC-3', SEQ ID 55 NO. 30) and NcoI-BP40-Rv (5'-CTCGAGCGTACGTGAG-CATC-3', SEQ ID NO. 31) as primers.

After TA-cloning this DNA fragment to pCR2.1, a roughly 600 bp DNA fragment obtained by digesting with BamHI and 60 NcoI and a binary vector fragment obtained by digesting pSFL814 with BamHI and NcoI were ligated to obtain pBin-PLUS Rugosa rose F3Hpro:ADHNF-pansy-F3'5'H#40:: Noster. This plasmid was introduced into Agrobacterium tumefaciens strain EHA105. 65

There were no individuals in which delphinidin was detected among four strains of transformants derived from chrysanthemum variety 94-765 obtained by using this transformed Agrobacterium (see Table 1).

Reference Example 8

Production of pBIN19 Rose CHSpro:ADH-pansy-F3'5'H#18::NOSter

A DNA fragment amplified by PCR using pB1221 ADH221 as template and using ADH KpnI Forward (5'-CGGTACCGTCTATTTAACTCAGTATTC-3', SEQ ID NO. 32) and GUS19R (5'-TTTCTACAGGACGTAACAT-AAGGGA-3', SEQ ID NO. 33) as primers was digested with KpnI and SmaI to obtain a roughly 110 bp tobacco ADH-5'UTR DNA fragment. This DNA fragment was ligated with a binary vector DNA fragment obtained by digesting pBRBP18 (having an expression cassette of rose CHSpro:: pansy-F3'5'H#18::NOSter inserted into pBIN19) with KpnI and SmaI to obtain pBIN19 rose CHSpro::ADH-pansy-F3'5'H#18:NOSter. In this plasmid, a 38 bp spacer is present between tobacco ADH-5'UTR and pansy F3'5'H#18. This plasmid was introduced into Agrobacterium tumefaciens strain EHA105.

30 strains of recombinant chrysanthemum derived from transformed Agrobacterium. Delphinidin was detected in the petals of five of these strains and delphinidin content reached 1.9%. However, there were no changes in flower color observed.

#### **Reference Example 9**

Production of pBI121-rose CHSpro::ADHNF-pansy-F3'5'H#40::NOSter

A DNA fragment obtained by PCR using pBRBP18 (Reference Example 3) as template, using HAPS-RhCHSpro3k-(5'-CCAAGCTTGGCGCGCCCTTAATTAAATT-Fd TAAATCAGCAAGAGTTGAAGAAATAG-3', SEQ ID NO. 85) and NS-RhCHSpro3k-Rv (5'-AAAGCTAGCACTAGT-CATCTCGGAGAAGGGTCG-3', SEQ ID NO. 86) as primers, and using Pyrobest Polymerase (Takara), and a binary vector fragment obtained by digesting with HindIII and NheI and digesting pBI121 ADHNF with HindIII and XbaI were ligated, and the resulting binary vector was designated pBI121-RhCHSp-GUS-NOSt.

An ADHNF-pansy-F3'5'H#40 DNA fragment obtained by digesting the pCR-ADHBP40-SpeSac obtained in Example 10 with SpeI and EcoICRI was ligated to a binary vector fragment obtained by digesting pBI121-RhCHSp-GUS-NOSt with SpeI and EcoICRI to obtain pBI121-rose CHSpro::ADHNF-pansy-F3'5'H#40:: NOSter, which was used to transform Agrobacterium tumefaciens strain EHA105

Although 19 strains of recombinant chrysanthemum derived from chrysanthemum variety 94-765 were obtained using this transformed Agrobacterium, there were no individuals in which delphinidin was detected.

#### Example 1

#### Cloning of the Promoter Region of Chrysanthemum Flavanone 3-Hydroxylase Gene

The cloned promoter region of the chrysanthemum flavanone 3-hydroxylase gene, F3Hpro1K, has the nucleic acid sequence depicted in SEQ ID NO: 34. A promoter region having a different length was amplified in the manner described below. This portion of the chrysanthemum flavanone 3-hydroxylase gene, F3Hpro500, has the nucleic acid sequence depicted in SEQ ID NO: 87.

A DNA fragment amplified by PCR using pBluescript 5 SK-gF3H9 as template and using HANS-F3Hpro-500Fd (5'-CCAAGCTTGGCGCGCCGCGCGCGCCGCATTTAAAT TACTGTTCGAACCTACAAAGG-3', SEQ ID NO. 83, underline indicates sequence that anneals with DNA containing F3H promoter region) and MX-F3Hpro-Rv (5'-TTTCTA- 10 GAACGCGTTTTTTTTTTTTTTTTTTTCTTCACACACTTG-3' SEQ ID NO. 84, underline indicates sequence that anneals with DNA containing F3H promoter region) as primers was cloned into pCR2.1 to obtain pCR HANS-CmF3Hpro500-X. In addition, a binary vector fragment obtained by digesting 15 pBI121 ADHNF with HindIII and XbaI and a roughly 500 bp chrysanthemum F3H promoter DNA fragment obtained by digesting pCR HANS-CmF3Hpro500-X with HindIII and XbaI were ligated to obtain pBI121 HANS-CmF3Hp500-X. 20

#### Example 2

#### Production of pBI121 Chrysanthemum F3Hpro1k::ADHNF-Bellflower F3'5'H::NOSter

Two types of primers consisting of CamF1 (5'-GT-GAAGCCACCATGTCTATAG-3', SEQ ID NO. 49) and CamR1 (5'-GCATTTGCCTAGACAGTGTAAG-3', SEQ ID NO. 50) were synthesized based on the translated sequence of F3'5'H cDNA (Accession No. D14590) of bellflower (Cam-30 panula medium) registered in the GenBank DNA database. RNA was extracted from the flower petals of commercially available bellflower buds using the RNeasy Mini Plant Kit (Qiagen), and 1st strand DNA was synthesized using an RT-PCR kit. PCR was carried out using primers by using this 1st 35 strand DNA as template. The resulting DNA fragment was cloned into pCR-TOPO II. The nucleotide sequence of the resulting clone #4 (designated as pSPB2561) was determined to be SEQ ID NO. 51.

A vector obtained by coupling tobacco ADH-5'UTR 94 bp 40 and F3'5'H gene was constructed in the manner described below (FIG. 4). Furthermore, the same procedure was also carried out in the subsequently described examples.

Two types of DNA fragments consisting of a DNA fragment amplified by PCR using pSPB2561 as template and 45 using ADH-Campa-Fd (5'-CAAGAAAAATAAATGTC-TATAGACATAACCATTC-3'. SEO ID NO. 53) and Hpal-Campa-Rv (5'-GTTAACATCTCTGGCACCACC-3', SEQ ID NO. 54) as primers and a DNA fragment amplified by PCR using pBI1121 ADH-221 as template and using XbaI-ADH- 50 Fd (SEQ ID NO. 42) and Campa-ADH-Rv (5'-GTCTATA-GACATTTATTTTTTTTTGATTTCCTTCAC-3', SEQ ID NO. 55) as primers, were synthesized, and a DNA fragment in which tobacco ADH-5'UTR 94 bp is directly coupled to the start codon of bellflower F3'5'H was obtained by PCR using 55 these two types of DNA fragments as templates and using XbaI-ADH-Fd (SEQ ID NO. 42) and HpaI-Campa-Rv (5'-GTTAAC ATCTCTGGCACCACC-3', SEQ ID NO. 56) as primers. This DNA fragment was then TA-cloned into pCR2.1 followed by digesting with XbaI and HpaI, and the 60 resulting roughly 650 bp fragment was ligated with a vector fragment obtained by digesting pSPB2561 with XbaI and HpaI to obtain pCR ADHNF-Campanula F3'5'H.

Next, pCR ADHNF-Campanula F3'5'H was digested with KpnI followed by blunting with Blunting High (Toyobo) and 65 digesting with XbaI, and the resulting roughly 1.7 kb DNA fragment was ligated with a binary vector fragment obtained

by digesting pBI121 HANS-CmF3Hp1k-S with SpeI and EcoICRI to obtain pBI121 chrysanthemum F3Hpro1k:: ADHNF-bellflower F3'5'H::NOSter. This plasmid was introduced into *Agrobacterium tumefaciens* strain EHA105.

48 recombinant chrysanthemum strains of chrysanthemum variety 94-765 were obtained by using this transformed *Agrobacterium*. Delphinidin was detected in the flower petals of 30 of these strains, and the delphinidin content reached 80.5%.

pSPB3738 was constructed from pBI121 chrysanthemum F3Hpro1k::ADHNF-bellflower F3'5'H::NOSter. This plasmid was transfected into *Agrobacterium tumefaciens* strain AGL0, and this was then used to transform the chrysanthemum variety Sei Taitan (Seikoen). Among the resulting 26 strains of recombinant chrysanthemums, a change in flower color was observed in 6 strains, and delphinidin was able to be detected by thin layer chromatography.

#### Example 3

#### Production of pIG121-Hm-chrysanthemum F3Hpro1k::ADHNF-Lisianthus F3'5'H::NOSter

Eustoma F3'5'H gene (EgF3'5'H, GenBank AB078957) 25 cloned into pBluescript SK- was digested with XhoI followed by blunting with Blunting High (Toyobo), and the roughly 1.9 kb EgF3'5'H DNA fragment obtained by further digesting with XbaI was ligated to a pIG121-Hm binary vector obtained by digesting with XbaI and EcoICRI to obtain pIG121-Hm <sup>30</sup> 35S::EgF3'5'H.

Next, two types of DNA fragments consisting of a DNA fragment amplified by PCR using pBluescript SK-EgF3'5'H as template and using ADH-EgF3'5'H-Fd (5'-CAA-GAAAAATAAAT GGCTGTTGGAAATGGCGTT-3', SEQ ID NO. 40) and HpaI-EgF3'5'H-Rv (5'-GTTAACGCT-GAGCCTAGTGCC-3', SEQ ID NO. 41) as primers, and a DNA fragment amplified by PCR using pBI221 ADH-221 (Satoh, J. et al. (2004), J. Biosci. Bioengineer) as template and using XbaI-ADH-Fd (5'-ACGCGTTCTAGAGTCTATT-TAACTCAGTATTC-3', SEQ ID NO. 42) and EgF3'5'H-(5'-TCCAACAGCCATTTATTTTTTCT-ADH-Rv TGATTTCCTTCAC-3', SEQ ID NO. 43) as primers, were mixed, and a DNA fragment in which tobacco ADH-5'UTR 94 bp (Satoh, J. et al. (2004), J. Biosci. Bioengineer) was directly coupled to the start codon of EgF3'5'H was obtained by PCR using the mixture of DNA fragments as template and using XbaI-ADH-Fd (SEQ ID NO. 42) and HpaI-EgF3'5'H-Rv (5'-GTTAACGCTGAGCCTAGTGCC-3', SEQ ID NO. 44) as primers. After cloning this DNA fragment into pCR2.1, a roughly 1.3 kb DNA fragment obtained by digesting with XbaI and HpaI and a binary vector fragment obtained by digesting pIG121-Hm 35S::EgF3'5'H with XbaI and HpaI were ligated to obtain pIG121-Hm 35S::ADHNF-EgF3'5'H. A roughly 1.2 kb EgF3'5'H DNA fragment obtained by digesting this pIG121-Hm 35S::EgF3'5'H with HindIII and XbaI, a roughly 15 kb binary vector DNA fragment, and a DNA fragment obtained by further digesting pCR HANS-CmF3Hp1k-MNS with HindIII and SpeI were ligated to obtain PIG121-Hm chrysanthemum F3Hpro1k::ADHNF-lisianthus F3'5'H::NOSter. This plasmid was introduced into Agrobacterium tumefaciens strain EHA105.

Five recombinant chrysanthemum strains derived from chrysanthemum variety 94-765 by using this transformed *Agrobacterium*. Delphinidin was detected in the flower petals of one of these strains, and the delphinidin content was 4.4%.

#### Example 4

#### Production of pBI121 Chrysanthemum F3Hpro1k::ADHNF-Lobelia F3'5'H::NOSter

F3'5'H gene derived from the flower petals of lobelia cloned into pBluescript SK- (LeF3'5'H1, GenBank ABS221077 and LeF3'5'H4, GenBank AB221078) was digested with KpnI followed by blunting with Blunting High (Toyobo), and a roughly 1.9 kb EgF3'5'H DNA fragment <sup>10</sup> obtained by further digesting with XbaI was ligated to a pIG121-Hm binary vector fragment obtained by digesting XbaI and EcoICRI to obtain pIG121-Hm 35S::LeF3'S'H1 and pIG121-Hm 35S::LeF3'5'H4.

Next, two types of DNA fragments consisting of a DNA 15 fragment amplified by PCR using pBluescript SK-LeF3'5'H1 or pBluescript SK-LeF3'5'H4 as template and using ADH-LeF3'5'H-Fd (5'-CAAGAAAATAAATGGACGCGA-CAWACATTGC-3', SEQ ID NO. 45) and HpaI-LeF3'5'H-Rv (5'-GTTAACATCTCGGGCAGCACC-3', SEQ ID NO. 46) 20 as primers, and a DNA fragment amplified by PCR using pBI121 ADH-221 as template and using XbaI-ADH-Fd (SEQ ID NO. 42) and LeF3'5'H-ADH-Rv (5'-TGTCGCGTC-CATTTATTTTTCTTGATTTCCTTCAC-3', SEQ ID NO. 47) as primers, were mixed, and DNA fragments in which 25 tobacco ADH-5'UTR 94 bp was directly coupled to the start codon of LeF3'5'H1 or LeF3'5'H4 were respectively obtained by using this mixture of DNA fragments as template and using XbaI-ADH-Fd (SEQ ID NO. 42) and HpaI-LeF3'5'H-Rv (5'-GTTAACATCTCGGGCAGCACC-3', SEQ ID NO. 30 48) as primers.

After respectively TA-cloning these DNA fragments into pCR2.1, a DNA fragment obtained by digesting with XbaI and HpaI and a binary vector fragment obtained by digesting pIG121-Hm 35S::LeF3'5'H1 or pIG12'-Hm 35S::LeF3'5'H4 35 with XbaI and HpaI were respectively ligated to obtain pIG121-Hm 35S:: ADHNF-LeF3'5'H1 and pIG121-Hm 35S::ADHNF-LeF3'5'H4. A roughly 2.6 kb ADHNF-LeF3'5'H1::NOSter DNA fragment obtained by digesting these binary vectors with XbaI and EcoRV was ligated with a 40 binary vector fragment obtained by digesting pBI121 HANS-CmF3Hp1k-S with SpeI and EcoICRI to obtain pBI121 chrysanthemum F3Hpro1kpro::ADHNF-loberia F3'5'H1:: NOSter and pBI121 chrysanthemum F3Hpro1kpro:: ADHNF-eustoma F3'5'H4::NOSter.

Although 12 strains of recombinant chrysanthemum derived from chrysanthemum variety 94-765 were obtained by using *Agrobacterium* transformed with pBI121 chrysanthemum F3Hpro1kpro::ADHNF-loberia F3'5'H1::NOSter, there were no individuals obtained that contained delphini-<sup>50</sup> din. In addition, although 34 strains of recombinant chrysanthemum derived from chrysanthemum variety 94-765 were obtained by using *Agrobacterium* transformed with pBI121 chrysanthemum F3Hpro1 kpro::ADHNF-loberia F3'5'H4:: NOSter, there were also no individuals obtained that con-<sup>55</sup> tained delphinidin.

#### Example 5

#### Production of pBINPLUS Chrysanthemum F3Hpro1k::ADHNF-Pansy-F3'5'H#40::NOSter

pBinPLUS chrysanthemum F3Hpro1k::ADHNF-pansy F3'5'H#40:: NOSter was obtained by ligating a roughly 1.1 kb chrysanthemum F3H promoter DNA fragment obtained by digesting pCR HANS-CmF3Hp1k-BcII with AscI and BcII, and a binary vector fragment obtained by digesting pBinPLUS Rugosa rose F3Hpro:: ADHNF-pansy F3'5'H#40:: NOSter with AscI and BamHI. This plasmid was introduced into *Agrobacterium tumefaciens* strain EHA105.

6 recombinant chrysanthemum strains derived from chrysanthemum variety 94-675 were obtained by using this transformed *Agrobacterium*. Delphinidin was detected in the flower petals of 4 of these strains, and the delphinidin content reached 26.8%.

#### Example 6

#### Production of pBI121 Chrysanthemum F3Hpro1k::ADHNF-Cineraria F3'5'H:NOSter and Transformation into Chrysanthemum

Two types of DNA fragments consisting of a DNA fragment amplified by PCR using the cineraria F3'S'H (pSPB2774) obtained in Reference Example 2 as template and using ADH-ScF3'5'H-Fd (5'-CAAGAAAAATAAAT-GAGCATTCTAACCCTAATC-3', SEQ ID NO. 57) and NdeI-ScF3'5'H-Rv (5'-CATATGTTTAGCTCCA-GAATTTGG-3', SEQ ID NO. 58) as primers, and a DNA fragment amplified by PCR using pBI121 ADH-221 as template and using XbaI-ADH-Fd (SEQ ID NO. 42) and ScF3'5'H-ADH-Rv (5'-TAGAATGCTCATTTATTTTTCT-TGATTTCCTTCAC-3', SEQ ID NO. 59) as primers, were mixed, and a DNA fragment in which tobacco ADH-5'UTR 94 bp was directly coupled to the start codon of cineraria F3'S'H was obtained by PCR using this mixture of DNA fragments as template and using XbaI-ADH-Fd (SEQ ID NO. 42) and NdeI-ScF3'5'H-Rv (5'-CATATGTTTAGCTCCA-GAATTTGG-3', SEQ ID NO. 60) as primers. After TA-cloning this DNA fragment into pCR2.1, a DNA fragment obtained by digesting with XbaI and NdeI and a vector fragment obtained by digesting pSPB2774 with XbaI and NdeI were ligated to obtain pBluescript Sk<sup>-</sup> ADHNF-cineraria F3'5'H.

Next, a roughly 1.7 kb DNA fragment obtained by digesting pBluescript Sk<sup>-</sup> ADHNF-cineraria F3'5'H with XbaI and XhoI and a vector fragment obtained by digesting pCR2.1 with XbaI and XhoI were ligated to obtain pCR2.1 ADHNFcineraria F3'5'H. pBI121 chrysanthemum F3Hpro1k:: ADHNF-cineraria F3'5'H:: NOSter was then obtained by ligating a DNA fragment obtained by digesting this pCR2.1 ADHNF-cineraria F3'5'H with XbaI and EcoRV with a binary vector fragment obtained by digesting pBI121 HANS-CmF3Hp1k-S with SpeI and EcoICRI. This plasmid was introduced into *Agrobacterium* tumefaciens strain EHA105. 50 recombinant strains derived from Chrysanthemum vari-

ety 94-765 were obtained by using this transformed *Agrobacterium*. Delphinidin was detected in the flower petals of 37 of these strains, and the delphinidin content reached 36.2%.

#### Example 7

#### Production of pBI121 Chrysanthemum F3Hpro1k::ADHNF-Japanese gentian F3'5'H::NOSter

Two types of DNA fragments consisting of a DNA fragment amplified by PCR using Japanese gentian F3'5'H cloned into pBluescript SK- (plasmid pG48 described in WO 2004/020637) as template and using ADH-Gentian-Fd (5'-CAA-GAAAAATAAATGTCACCCATTTACACCACCC-3', SEQ
ID NO. 61) and SalI-Gentian F3'5'H-Rv (5'-GTCGACGC-TATTGCTAAGCC-3', SEQ ID NO. 62) as primers, and a DNA fragment amplified by PCR using pBI121 ADH-221 as

template and using XbaI-ADH-Fd (SEQ ID NO. 42) and Gentian-ADH-Rv (5'-AATGGGTGACATTTATTTTTCT-TGATTTCCTTCAC-3', SEQ ID NO. 63) as primers, were mixed, and a DNA fragment in which tobacco ADH-5'UTR 94 bp was directly coupled to the start codon of Japanese 5 gentian F3'5'H was obtained by using this mixture of DNA fragments as template and using XbaI-ADH-Fd (SEQ ID NO. 42) and SaII-Gentian F3'5'H-Rv (5'-GTCGACGCTAT-TGCTAAGCC-3', SEQ ID NO. 64) as primers. After TAcloning this DNA fragment into pCR2.1, a roughly 400 bp 10 DNA fragment obtained by digesting with XbaI and SaII and a vector fragment obtained by digesting pG48 with XbaI and SaII were ligated to obtain pBluescript SK-ADHNF-Japanese gentian F3'5'H.

Next, a roughly 1.8 kb DNA fragment obtained by digest-<sup>15</sup> ing pBluescript SK-ADHNF-Japanese gentian F3'S'H with XbaI and XhoI and a vector fragment obtained by digesting pCR2.1 with XbaI and XhoI were ligated to obtain pCR2.1 ADHNF-Japanese gentian F3'S'H. pBI112 chrysanthemum F3Hpro1k::ADHNF Japanese gentian F3'S'H::NOSter was <sup>20</sup> obtained by ligating a DNA fragment obtained by digesting this pCR2.1 ADHNF-Japanese gentian F3'S'H with XbaI and EcoRV and a binary vector fragment obtained by digesting pBI121 HANS-CmF3Hp1k-S with SpeI and EcoICRI. This plasmid was introduced into *Agrobacterium tumefaciens* <sup>25</sup> strain EHA105.

Although 21 recombinant chrysanthemum strains derived from Chrysanthemum variety 94-765 were obtained by using this transformed *Agrobacterium*, there were no individuals obtained that contained delphinidin.

#### Example 8

#### Production of pBI121 Chrysanthemum F3Hpro1k::ADHNF-Verbena F3'5'H::NOSter

Two types of DNA fragments consisting of a DNA fragment amplified by PCR using verbena F3'5'H cloned into pBluescript SK- (pHVF7, Plant Biotechnology, 23, 5-11, 2006, DNA database accession no. ABA234898) as template 40 and using ADH-Verbena-Fd (5'-CAAGAAAAATAAAT-GACGTTTTCAGAGCTTATAAAC-3', SEQ ID NO. 65) and NcoI-Verbena F3'5'H-Rv (5'-CCATGGAGTAAATCAG-CATCTC-3', SEQ ID NO. 66) as primers, and a DNA fragment amplified by PCR using pBI121 ADH-221 as template 45 and using XbaI-ADH-Fd (SEQ ID NO. 42) and Verbena ADH-Rv (5'-TGAAAACGTCATTTATTTTTCT-TGATTTCCTTCAC-3', SEQ ID NO. 67) as primers, were mixed, and a DNA fragment in which tobacco ADH-5'UTR 94 bp was directly coupled to the start codon of verbena 50 F3'S'H was obtained by PCR using the mixture of DNA fragments as template and using XbaI-ADH-Fd (SEQ ID NO. 42) and NcoI-Verbena F3'5'H-Rv (5'-CCATGGAGTAAAT-CAGCATCTC-3', SEQ ID NO. 68) as primers. After TAcloning this DNA fragment into pCR2.1, pBluescript SK- 55 ADHNF-verbena F3'S'H was obtained by ligating a roughly 700 b DNA fragment obtained by digesting with XbaI and NcoI and a vector fragment obtained by digesting pHVF7 with XbaI and NcoI.

Next, a 1.8 kb DNA fragment obtained by digesting pBlueoscript SK-ADHNF-verbena F3'5'H with XbaI and XhoI and a vector fragment obtained by digesting pCR2.1 with XbaI and XhoI were ligated to obtain pCR2.1 ADHNF-verbena F3'5'H. pBI121 chrysanthemum F3Hpro1k::ADHNF-verbena F3'5'H::NOSter was then obtained by ligating a DNA fragment obtained by digesting this pCR2.1 ADHNF-verbena F3'S'H with XbaI and EcoRV and a binary vector fragment

obtained by digesting pBI121 HANS-CmF3Hk1k-S with SpeI and EcoICRI. This plasmid was introduced into *Agrobacterium tumefaciens* strain EHA105.

17 recombinant chrysanthemum strains derived from chrysanthemum variety 94-765 were obtained by using this transformed *Agrobacterium*. Delphinidin was detected in the flower petals of 11 of these strains, and the maximum delphinidin content was 28.4%.

#### Example 9

#### Production of pBI121 Chrysanthemum F3Hpro1k::ADHNF-Blue Snapdragon F3'5'H::NOSter

A cDNA library was produced using mRNA obtained from the bud of a type of snapdragon (*Antirrhinum kelloggii*, blue snapdragon) using the Uni-ZAP XR Vector Kit (Stratagene) in accordance with the method recommended by the manufacturer. This library was screened according to the method described in Reference Example 2 to obtain two types of plasmids pSPB3145 and pSPB3146 respectively containing F3'5'H cDNA #1 (SEQ ID NO. 69) and F3'5'H cDNA #12 (SEQ ID NO. 71).

Two types of DNA fragments consisting of a DNA fragment amplified by PCR using pSPB3145 or pSPB3146 as template and using ADH-AkF3'5'H-Fd (5'-CAA-GAAAAATAAATGCAGATAATAATTCCGGTCC-3', SEQ ID NO. 73) and NsiI-AkF3'5'H-Rv (5'-ATGCATGTC-CTCTAACATGTATC-3', SEQ ID NO. 74) as primers, and a DNA fragment amplified by PCR using pBI121 ADH-221 as template and using XbaI-ADH-Fd (SEQ ID NO. 42) and AkF3'5'H-ADH-Rv (5'-TATTATCTGCATTTATTTTCT-TGATTTCCTTCAC-3', SEQ ID NO. 75) as primers, were mixed, and a DNA fragment in which tobacco ADH-5'UTR 94 bp was directly coupled to the start codon of blue snapdragon (Ak)F3'5'H #1 or #12 was respectively obtained by PCR using the mixture of DNA fragments as template and using XbaI-ADH-Fd (SEQ ID NO. 42) and NsiI-AkF3'5'H-Rv (5'-ATGCATGTCCTCTAACATGTATC-3', SEQ ID NO. 76) as primers. After TA-cloning this DNA fragment to  $pCR2.1, pBluescript\,SK-ADHNF-AkF3'5'H\,\#1$  and #12 were obtained by respectively ligating a roughly 700 b DNA fragment obtained by digesting with XbaI and NsiI and a vector fragment obtained by digesting pSPB3145 (pBluescript SK-AkF3'S'H#1) and pSBP3146 (pBluescript SK-AkF3'S'H #12) with XbaI and NsiI.

Next, roughly 700 b DNA fragments obtained by digesting pBluescript SK-ADHNF-AkF3'S'H #1 and #12 with XbaI and XhoI were ligated with a vector fragment obtained by digesting pCR2.1 with XbaI and XhoI to obtain pCR2.1 ADHNF-AkF3'5'H #1 and #12. pBI121 chrysanthemum F3Hpro1k::ADHNF-AkF3'5'H#1::NOSter and pBI121 chrysanthemum F3Hpro1k::ADHNF-AkF3'5'H#12::NOSter were obtained by respectively ligating DNA fragments obtained by digesting these pCR2.1 ADHNF-AkF3'5'H #1 and #12 with XbaI and EcoRV with a binary vector fragment obtained by digesting pBI121 HANS-CmF3Hp1k-S with SpeI and EcoICRI. These plasmids were transfected into *Agrobacterium tumefaciens* strain EHA105.

1 strain of recombinant chrysanthemum derived from chrysanthemum variety 94-765 was obtained by using this transformed *Agrobacterium*. Delphinidin was detected in the flower petals of this strain, and the delphinidin content reached 2.9%.

10

### Example 10

### Production of pBI121 Chrysanthemum F3Hpro500::ADHNF-Cineraria F3'5'H::NOSter

A binary vector DNA fragment obtained by digesting the pBI121 HANS-CmF3Hp500-X obtained in Example 1 with XbaI and EcoICRI and a DNA fragment of ADHNF-cineraria F3'5'H obtained by digesting the pCR2.1 ADHNF-cineraria F3'5'H obtained in Example 6 were ligated to obtain pBI121chrysanthemum F3Hpro500::ADHNF-cineraria F3'5'H:: NOSter, which was then introduced into Agrobacterium tumefaciens strain EHA105.

Seven stains of recombinant chrysanthemum derived from chrysanthemum variety Taihei were obtained by using this transformed Agrobacterium. Delphinidin was detected in 5 of those strains, and delphinidin content reached 25.5%.

### INDUSTRIAL APPLICABILITY

According to the present invention, chrysanthemum flower color can be changed to blue by using the transcriptional regulatory region of chrysanthemum-derived flavanone 3-hydroxylase (F3H), expressing flavonoid 3'5'-hydroxylase (F3'5'H) in chrysanthemum, and allowing a large amount of delphinidin to accumulate in the flower petals. Although chrysanthemums come in flower colors including white, yellow, orange, red, pink and purplish red, since there are no existing varieties or closely related wild varieties that produce bluish flowers such as those having a purple or blue  $_{15}$  color, blue chrysanthemums produced according to the method of the present invention will lead to stimulation of new demand.

|                                                  | Gene Cassette 1 F3'5'H                                               | H.S                                 |            | I               |                          |                 |                  | No. of<br>individuals | No. of<br>individuals | Delp.<br>Con      | Delphinidin<br>Content** | I                        |
|--------------------------------------------------|----------------------------------------------------------------------|-------------------------------------|------------|-----------------|--------------------------|-----------------|------------------|-----------------------|-----------------------|-------------------|--------------------------|--------------------------|
|                                                  |                                                                      | F3'5'H gene                         |            |                 | Gene Cassette 2          | 2               | No.              | analyzed for          | containing            | Mean 1            | Mean Maximum             |                          |
| Promoter                                         | ADH enhancer <sup>*</sup>                                            | origin                              | Terminator | Promoter        | Gene                     | Terminator      | of transformants | aglycones             | delphinidin           | (%)               | (%)                      | Example No.              |
| Rugosa rose DFR<br>Rugosa rose DFR               | None<br>None                                                         | Pansy #40<br>Pansy #40              | NOS<br>NOS | Rose ANS        | Torenia<br>sCT           | MAS             | 4 0              | 4 1                   | 1<br>0                | 0.3<br>0.0        | 0.6<br>0.0               | Ref. Ex. 5<br>Ref. Ex. 5 |
| Rugosa rose F3H<br>Rugosa rose F3H               | None<br>94 bp, direct                                                | Pansy #40<br>Pansy #40              | SON        |                 | 100                      |                 | ω4               | ю 0                   | 0 0                   | 0.0               | 0.0                      | Ref. Ex. 6<br>Ref. Ex. 7 |
| Rugosa rose DFR                                  | coupled<br>None                                                      | Pansy #40                           | NOS        | Gentian<br>3'GT | Torenia MT               | NOS             | \$               | 4                     | 4                     | 0.7               | 0.9                      | Ref. Ex. 5               |
| <i>Gerbera</i> CHS<br>Pansy #40                  | None<br>None                                                         | Pansy #18<br>Pansy #40              | SON        | Perilla<br>3 AT | Perilla<br>3 AT          | Perilla<br>3 AT | Q 7              | 1 6                   | 04                    | 0.0<br>0.6        | 0.0<br>1.4               | Ref. Ex. 4               |
| Rose CHS<br>Rose CHS                             | None<br>None                                                         | Pansy #18<br>Pansy #18              | SON        | Rose CHS        | Chrysanthemum<br>East ID | SON             | 11<br>11         | 10<br>11              | 5 2                   | 1.3<br>0.4        | 5.4<br>3.6               | Ref. Ex. 3<br>Ref. Ex. 3 |
| Rose CHS<br>Rose CHS                             | 94 bp, with spacer<br>94 bp, direct                                  | Pansy #18<br>Pansy #40              | SON        |                 | VII H CI                 |                 | 30<br>19         | 29<br>19              | 5<br>0                | 0.2<br>0.0        | $1.9 \\ 0.0$             | Ref. Ex. 8<br>Ref. Ex. 9 |
| CaMV35S<br>CaMV35S<br><i>Chrysanthemum</i> F3H1k | coupled<br>74 bp, with spacer<br>74 bp, with spacer<br>94 bp, direct | Pansy #40<br>Bellflower<br>Gentian  | SON<br>SON |                 |                          |                 | 8<br>11<br>21    | 5<br>9<br>19          | 0 6 0                 | 0.2<br>1.5<br>0.0 | 0.7<br>6.9<br>0.0        | Ex. 7                    |
| Chrysanthemum F3H1k                              | coupieu<br>94 bp, direct<br>coupled                                  | Lobelia #1                          | SON        |                 |                          |                 | 12               | 11                    | 0                     | 0.0               | 0.0                      | Ex. 4                    |
| Chrysanthemum F3H1k<br>Chrysanthemum F3H1k       | 94 bp, direct<br>coupled<br>94 bp, direct                            | <i>Lobelia</i> #4<br>Blue           | SON        |                 |                          |                 | 34 1             | 20<br>1               | 1 0                   | 0.0               | 0.0<br>2.9               | Ex. 4<br>Ex. 9           |
| Chrysanthemum F3H1k<br>Chrysanthemum F3H500      | coupled<br>94 bp, direct<br>coupled<br>94 bn, direct                 | snap-dragon<br>Eustoma<br>Cineraria | SON        |                 |                          |                 | S L              | S 1-                  | v                     | 0.9               | 4.4                      | Ex. 3<br>Ex. 10          |
| Chrysanthemum F3H1k                              |                                                                      | Pansy #40                           | SON        |                 |                          |                 | . y              | S                     | 9 4                   | 14.9              | 26.8                     | Ex. 5                    |
| Chrysanthemum F3H1k<br>Chrysanthemum F3H1k       | 94 bp, direct<br>coupled<br>94 bp, direct                            | Verbena<br>Cineraria                | NOS        |                 |                          |                 | 17<br>50         | 12<br>47              | 11<br>37              | 8.9<br>7.5        | 28.4<br>36.2             | Ex. 8<br>Ex. 6           |
| Chrysanthemum F3H1k                              | coupled<br>94 bp, direct<br>coupled                                  | Bellflower                          | SON        |                 |                          |                 | 48               | 39                    | 30                    | 31.4              | 80.5                     | Ex. 2                    |

TABLE 1

27

28

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 87

<210> SEQ ID NO 1 <211> LENGTH: 1096 <212> TYPE: DNA <213> ORGANISM: Perilla frutescens <220> FEATURE: <221> NAME/KEY: promoter <222> LOCATION: (1)..(1096) <223> OTHER INFORMATION: anthocyanin 3-acyl transferase promoter <400> SEQUENCE: 1 aactattatg atcccacaga gtttttgaca gatgagtctt caggaggaga tgctgaacct tttcactact ctactgaacg catcacaagt ttatcggctt atatgactaa tagggatcaa 120 cttcacaaca gagaggctca tagagctctt aaagaggatt tgatcgagca catatggaaa 180 aaatteggea etaactaaat atataattta egttttatge aetegtaatt taaaatttea 240 tgtgtctcat tgtagtttat ttaattatgt tttcactctt gtaattttta ttttgttgtg 300 aagtaaatta tgaatttata attatatggg taattttttg ataattatgc aattaaaaat 360 aattaatatt ttttaaatgc aagagaaaaa tgttatttta ataacatgtt cttattaaaa 420 aataaaatga taaatatttt atgtaggttg ggagaaaatg aaaaaataat attttatttg 480 aaggttgggt tggatgaggt cactgatggg agtataaata atactccctc cgtcccataa 540 ttattgtcca ttattccttt ttgggatgtc ccaaaattat agtcctattc taaattggga 600 ttgtatttaa atattetttt acaaatataa eeetatttga tatagtatga atgeaattaa 660 tatagtaaaa aaataagggc aatataggat aattattgta aattgtatat ttccaataca 720 tattaaatgt gatttettaa tetgtgtgaa aataggaagt ggaetataat tatgggaegg 780 840 agattggatt aaaggaggtc actgatgtgg gtagtcttag aggaaatgta gtcttagagg 900 aaatctgccc agcaaaataa aataataagt aaataaataa actaaatatg tattgaatgc 960 gacatetage aatatageea catatatagt geagtageae geagegeteg ttaetegtea 1020 gtcgtcaaag aatggtaagt atagaaaagc atctttaaat aacacaccaa aaaccacagc 1080 tacgttcaac accgcc 1096 <210> SEQ ID NO 2 <211> LENGTH: 4087 <212> TYPE: DNA <213> ORGANISM: Perilla frutescens <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (1097)..(2443) <223> OTHER INFORMATION: pSPB3311, anthocyanin 3-acyl transferase promoter + CDS + terminator <400> SEOUENCE: 2

aactattatg atcccacaga gtttttgaca gatgagtctt caggaggaga tgctgaacct 60 tttcactact ctactgaacg catcacaagt ttatcggctt atatgactaa tagggatcaa 120 cttcacaaca gagaggctca tagagctctt aaagaggatt tgatcgagca catatggaaa 180 aaattcggca ctaactaaat atataattta cgttttatgc actcgtaatt taaaatttca 240 tgtgtctcat tgtagtttat ttaattatgt tttcactctt gtaattttta ttttgttgtg 300 aagtaaatta tgaatttata attatatggg taattttttg ataattatgc aattaaaaat 360 aattaatatt ttttaaatgc aagagaaaaa tgttatttta ataacatgtt cttattaaaa 420

60

# US 9,074,215 B2

31

| -concinued                                                                                                                                            |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| aataaaatga taaatatttt atgtaggttg ggagaaaatg aaaaaataat attttatttg                                                                                     | 480  |
| aaggttgggt tggatgaggt cactgatggg agtataaata atactccctc cgtcccataa                                                                                     | 540  |
| ttattgtcca ttattccttt ttgggatgtc ccaaaattat agtcctattc taaattggga                                                                                     | 600  |
| ttgtatttaa atattetttt acaaatataa eeetatttga tatagtatga atgeaattaa                                                                                     | 660  |
| tatagtaaaa aaataagggc aatataggat aattattgta aattgtatat ttccaataca                                                                                     | 720  |
| tattaaatgt gatttettaa tetgtgtgaa aataggaagt ggaetataat tatgggaegg                                                                                     | 780  |
| agggagtata aagttggagg ttgtggatgt ggaggagaaa gaaattaata ttttattta                                                                                      | 840  |
| agattggatt aaaggaggtc actgatgtgg gtagtcttag aggaaatgta gtcttagagg                                                                                     | 900  |
| aaatctgccc agcaaaataa aataataagt aaataaataa actaaatatg tattgaatgc                                                                                     | 960  |
| gacatctagc aatatagcca catatatagt gcagtagcac gcagcgctcg ttactcgtca                                                                                     | 1020 |
| gtcgtcaaag aatggtaagt atagaaaagc atctttaaat aacacaccaa aaaccacagc                                                                                     | 1080 |
| tacgttcaac accgcc atg acc acc acc gtg atc gaa acg tgt aga gtt ggg<br>Met Thr Thr Thr Val Ile Glu Thr Cys Arg Val Gly<br>1 5 10                        | 1132 |
| cca ccg ccg gac tcg gtg gcg gag caa tcg ttg ccg ctc aca ttc ttc<br>Pro Pro Pro Asp Ser Val Ala Glu Gln Ser Leu Pro Leu Thr Phe Phe<br>15 20 25        | 1180 |
| gac atg acg tgg ctg cat ttt cat ccc atg ctt cag ctc ctc ttc tac<br>Asp Met Thr Trp Leu His Phe His Pro Met Leu Gln Leu Leu Phe Tyr<br>30 35 40        | 1228 |
| gaa tto oot tgt too aag caa cat tto toa gaa too ato att coa aaa<br>Glu Phe Pro Cys Ser Lys Gln His Phe Ser Glu Ser Ile Ile Pro Lys<br>45 50 55 60     | 1276 |
| ctc aaa caa tct ctc tct aaa act ctc ata cac ttc tt                                                                                                    | 1324 |
| tgc aat tta atc tac cct tca tct ccg gag aaa atg ccc gag ttt cgg<br>Cys Asn Leu Ile Tyr Pro Ser Ser Pro Glu Lys Met Pro Glu Phe Arg<br>80 85 90        | 1372 |
| tat cta tcg ggg gac tcg gtt tct ttc act atc gca gaa tct agc gac<br>Tyr Leu Ser Gly Asp Ser Val Ser Phe Thr Ile Ala Glu Ser Ser Asp<br>95 100 105      | 1420 |
| gac ttc gat gat ctc gtc gga aat cgc gca gaa tct ccc gtt agg ctc<br>Asp Phe Asp Asp Leu Val Gly Asn Arg Ala Glu Ser Pro Val Arg Leu<br>110 115 120     | 1468 |
| tac aac ttc gtc cct aaa ttg ccg cag att gtc gaa gaa tct gat aga<br>Tyr Asn Phe Val Pro Lys Leu Pro Gln Ile Val Glu Glu Ser Asp Arg<br>125 130 135 140 | 1516 |
| aaa ctc ttc caa gtt ttc gcc gtg cag gtg act ctt ttc cca ggt cga<br>Lys Leu Phe Gln Val Phe Ala Val Gln Val Thr Leu Phe Pro Gly Arg<br>145 150 155     | 1564 |
| ggc gtc ggt att gga ata gca acg cat cac acc gtt agc gat gcc ccg<br>Gly Val Gly Ile Gly Ile Ala Thr His His Thr Val Ser Asp Ala Pro<br>160 165 170     | 1612 |
| tcg ttt ctc gcc ttt ata acg gct tgg gct tgg atg agc aaa cac att<br>Ser Phe Leu Ala Phe Ile Thr Ala Trp Ala Trp Met Ser Lys His Ile<br>175 180 185     | 1660 |
| gaa gat gaa gat gaa gag ttt aaa tct ttg cca gtt ttc gat aga tcc<br>Glu Asp Glu Asp Glu Glu Phe Lys Ser Leu Pro Val Phe Asp Arg Ser<br>190 195 200     | 1708 |
| gtc ata aaa tat ccg acg aaa ttt gac tcg att tat tgg aaa aag gcg<br>Val Ile Lys Tyr Pro Thr Lys Phe Asp Ser Ile Tyr Trp Lys Lys Ala<br>205 210 215 220 | 1756 |
| cta aaa ttt cct ttg caa tct cgt cat ccc tca tta ccg acg gac cgc                                                                                       | 1804 |

| Leu  | Lys               | Phe   | Pro   | Leu<br>225 | Gln   | Ser   | Arg      | His   | Pro<br>230 | Ser      | Leu   | Pro   | Thr   | Asp<br>235 | Arg              |              |
|------|-------------------|-------|-------|------------|-------|-------|----------|-------|------------|----------|-------|-------|-------|------------|------------------|--------------|
|      | cga<br>Arg        |       | -     |            | ~     |       |          |       |            | ~        |       | -     |       | -          | -                | 1852         |
|      | tcg<br>Ser        |       |       |            |       |       |          |       |            |          |       |       |       |            |                  | 1900         |
|      | gcg<br>Ala<br>270 |       |       |            |       |       |          |       |            |          |       |       |       |            |                  | 1948         |
|      | gat<br>Asp        |       |       |            |       |       |          |       |            |          |       |       |       |            |                  | 1996         |
|      | cta<br>Leu        |       |       |            |       |       |          |       |            |          |       |       |       |            |                  | 2044         |
|      | tgc<br>Cys        |       |       |            |       |       |          |       |            |          |       |       |       |            |                  | 2092         |
|      | gag<br>Glu        |       |       |            |       |       |          |       |            |          |       |       |       |            |                  | 2140         |
|      | aaa<br>Lys<br>350 |       |       |            |       |       |          |       |            |          |       |       |       |            |                  | 2188         |
|      | ctg<br>Leu        |       |       |            |       |       |          |       |            |          |       |       |       |            |                  | 2236         |
|      | tcg<br>Ser        |       |       |            |       |       |          |       |            |          |       |       |       |            |                  | 2284         |
|      | aga<br>Arg        |       |       |            |       |       |          |       |            |          |       |       |       |            |                  | 2332         |
|      | ctt<br>Leu        |       |       |            |       |       |          |       |            |          |       |       |       |            |                  | 2380         |
|      | ttg<br>Leu<br>430 |       |       |            |       |       | <u> </u> | •     |            | <u> </u> |       |       |       |            | 0 0              | 2428         |
|      | att<br>Ile        |       |       | taa        | taaa  | atgta | atg 1    | caati | taaa       | ct aa    | atati | tatta | a tgi | caaca      | aatt             | 2483         |
| aati | taagt             | gt 1  | tgagi | taac       | gt ga | aagaa | ataat    | t ato | cttt       | acc      | tati  | tata  | tat 1 | tato       | gagttg           | 2543         |
|      |                   |       |       |            |       |       |          |       |            |          |       |       |       |            | atattt           | 2603         |
|      |                   |       |       |            |       |       |          |       |            |          |       |       |       |            | accac            | 2663         |
|      |                   |       |       |            |       |       |          |       |            |          |       |       |       |            | cattct<br>gtatga | 2723<br>2783 |
|      |                   |       |       |            |       |       |          |       |            |          |       |       |       |            | gcatgg           | 2783         |
|      |                   |       |       |            |       |       |          |       |            |          |       |       |       |            | attcta           | 2903         |
| _    |                   |       |       | _          |       |       | _        |       | _          |          |       |       |       |            | gggtgg           | 2963         |
| gct  | gtcg              | ccc a | atgg  | geee       | cg aa | aatci | ttag     | g ggo | caaaa      | aaaa     | aaa   | aaati | tca 1 | tata       | acctag           | 3023         |
| gge  | aaaaa             | aaa 1 | ttac  | cgct       | ct to | cacti | tctct    | c gco | ctct       | ctcc     | ctca  | atcc  | ctc g | gttco      | etecte           | 3083         |

# US 9,074,215 B2

36

35

| -continued                                                                         |      |
|------------------------------------------------------------------------------------|------|
| tetetteeet atgtaegeet ettteactee etceeeetet etcagttete tateaettgt                  | 3143 |
| attttgtatt gaaaacttgt tgaaaactaa accaaaaata gaaaaaggta tagaaaattt                  | 3203 |
| gaaaacaaag gttgtttttt tgtgttgctg cagttcccaa acttgccgag ttgccgactt                  | 3263 |
| gccgtgttga attgttatat atgttaaaag cctaaaatat atcctttcag aattgagatg                  | 3323 |
| gattgttgta actatcaggt tttttttatt gagaatttta gatcaattag ttatcttgta                  | 3383 |
| attttttatt ctttttaata caatactooc tooatoocaa tagcaaggto coottgotat                  | 3443 |
| tgggcacggg tattaaggag gaggattatt ataatgaaaa ttaatataaa gtaagtggat                  | 3503 |
| tccactttat taaggaatat tataatcaaa agtaatataa agtaagtgga ttccacttta                  | 3563 |
| attaggacac taattatttt cttttttggt atgagacttt gctattggga catcccaaaa                  | 3623 |
| aggcaaaaga gaccttgcta ttaggacggt ggacgtgctg ccgaggcacg caaattaatt                  | 3683 |
| tacettteet ettetataet aaetegtagt ageggegagt aaaggtegaa eeeteaagga                  | 3743 |
| gcaattgaac tagatgtgct attagaaata aaataaacac aagtgagagg ggagtttttg                  | 3803 |
| gtttcaattt aactaaaact aattatgaaa atgaaaaaac aaatataaaa cataaacagg                  | 3863 |
| tagacgaaat atgataaaga tagaatteta gtteteggtt eagttateae ettteteeaa                  | 3923 |
| gtatttcatg aataatgcaa cgcctcttt catacaactt agaatcgatg tccaaaggtt                   | 3983 |
| aatatcaagc tttatttacc taattgtete gtacgattag ttaactaaaa caagetettt                  | 4043 |
| aattaactct actcaattag ataacctaga ataagctctc taga                                   | 4087 |
| <212> TYPE: PRT<br><213> ORGANISM: Perilla frutescens<br><400> SEQUENCE: 3         |      |
| Met Thr Thr Val Ile Glu Thr Cys Arg Val Gly Pro Pro Asp<br>1 5 10 15               |      |
| Ser Val Ala Glu Gln Ser Leu Pro Leu Thr Phe Phe Asp Met Thr Trp<br>20 25 30        |      |
| Leu His Phe His Pro Met Leu Gln Leu Leu Phe Tyr Glu Phe Pro Cys<br>35 40 45        |      |
| Ser Lys Gln His Phe Ser Glu Ser Ile Ile Pro Lys Leu Lys Gln Ser<br>50 55 60        |      |
| Leu Ser Lys Thr Leu Ile His Phe Phe Pro Leu Ser Cys Asn Leu Ile<br>65 70 75 80     |      |
| Tyr Pro Ser Ser Pro Glu Lys Met Pro Glu Phe Arg Tyr Leu Ser Gly<br>85 90 95        |      |
| Asp Ser Val Ser Phe Thr Ile Ala Glu Ser Ser Asp Asp Phe Asp Asp<br>100 105 110     |      |
| Leu Val Gly Asn Arg Ala Glu Ser Pro Val Arg Leu Tyr Asn Phe Val<br>115 120 125     |      |
| Pro Lys Leu Pro Gln Ile Val Glu Glu Ser Asp Arg Lys Leu Phe Gln<br>130 135 140     |      |
| Val Phe Ala Val Gln Val Thr Leu Phe Pro Gly Arg Gly Val Gly Ile<br>145 150 155 160 |      |
| Gly Ile Ala Thr His His Thr Val Ser Asp Ala Pro Ser Phe Leu Ala<br>165 170 175     |      |
| Phe Ile Thr Ala Trp Ala Trp Met Ser Lys His Ile Glu Asp Glu Asp                    |      |
| 180 185 190                                                                        |      |
| Glu Glu Phe Lys Ser Leu Pro Val Phe Asp Arg Ser Val Ile Lys Tyr                    |      |

|                                                                                                    |                                                                                                                                                                                                                          | 195                                                                                                         |                                                                                       |                                                                           |                                                               |                                                       | 200                                     |            |            |            |            | 205        |            |            |                          |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------|------------|------------|------------|------------|------------|------------|------------|--------------------------|
| Pro                                                                                                | Thr<br>210                                                                                                                                                                                                               | Lys                                                                                                         | Phe                                                                                   | Asp                                                                       | Ser                                                           | Ile<br>215                                            | Tyr                                     | Trp        | Lys        | Lys        | Ala<br>220 | Leu        | Lys        | Phe        | Pro                      |
| Leu<br>225                                                                                         | Gln                                                                                                                                                                                                                      | Ser                                                                                                         | Arg                                                                                   | His                                                                       | Pro<br>230                                                    | Ser                                                   | Leu                                     | Pro        | Thr        | Asp<br>235 | Arg        | Ile        | Arg        | Thr        | Thr<br>240               |
| Phe                                                                                                | Val                                                                                                                                                                                                                      | Phe                                                                                                         | Thr                                                                                   | Gln<br>245                                                                | Ser                                                           | Glu                                                   | Ile                                     | Lys        | Lys<br>250 | Leu        | Гла        | Gly        | Ser        | Ile<br>255 | Gln                      |
| Ser                                                                                                | Arg                                                                                                                                                                                                                      | Val                                                                                                         | Pro<br>260                                                                            | Ser                                                                       | Leu                                                           | Val                                                   | His                                     | Leu<br>265 | Ser        | Ser        | Phe        | Val        | Ala<br>270 | Ile        | Ala                      |
| Ala                                                                                                | Tyr                                                                                                                                                                                                                      | Met<br>275                                                                                                  | Trp                                                                                   | Ala                                                                       | Gly                                                           | Val                                                   | Thr<br>280                              | Lys        | Ser        | Leu        | Thr        | Ala<br>285 | Asp        | Glu        | Asp                      |
| His                                                                                                | Asp<br>290                                                                                                                                                                                                               | Asp                                                                                                         | Gly                                                                                   | Asp                                                                       | Ala                                                           | Phe<br>295                                            | Phe                                     | Leu        | Ile        | Pro        | Val<br>300 | Asp        | Leu        | Arg        | Pro                      |
| Arg<br>305                                                                                         |                                                                                                                                                                                                                          | Asp                                                                                                         | Pro                                                                                   | Pro                                                                       | Val<br>310                                                    |                                                       | Glu                                     | Asn        | Tyr        | Phe<br>315 |            | Asn        | Суз        | Leu        | Ser<br>320               |
|                                                                                                    | Ala                                                                                                                                                                                                                      | Leu                                                                                                         | Pro                                                                                   | Arg<br>325                                                                |                                                               | Arg                                                   | Arg                                     | Arg        | Glu<br>330 |            | Val        | Gly        | Glu        | Lys<br>335 |                          |
| Val                                                                                                | Phe                                                                                                                                                                                                                      | Leu                                                                                                         |                                                                                       |                                                                           | Glu                                                           | Ala                                                   | Ile                                     |            |            | Glu        | Ile        | Гла        |            | Arg        | Ile                      |
| Asn                                                                                                | Asp                                                                                                                                                                                                                      | -                                                                                                           | 340<br>Arg                                                                            | Ile                                                                       | Leu                                                           | Glu                                                   |                                         | 345<br>Val | Glu        | Lys        | Trp        |            | 350<br>Leu | Glu        | Ile                      |
| Arg                                                                                                | Glu                                                                                                                                                                                                                      | 355<br>Ala                                                                                                  | Leu                                                                                   | Gln                                                                       | Lys                                                           | Ser                                                   | 360<br>Tyr                              | Phe        | Ser        | Val        | Ala        | 365<br>Gly | Ser        | Ser        | Lys                      |
| Leu                                                                                                | 370<br>Asp                                                                                                                                                                                                               | Leu                                                                                                         | Tyr                                                                                   | Gly                                                                       | Ala                                                           | 375<br>Asp                                            | Phe                                     | Gly        | Trp        | Gly        | 380<br>Lys | Ala        | Arg        | Lys        | Gln                      |
| 385                                                                                                | -                                                                                                                                                                                                                        |                                                                                                             | -                                                                                     | -                                                                         | 390                                                           |                                                       |                                         | -          | -          | 395        | -          |            | -          | -<br>Cys   | 400                      |
|                                                                                                    |                                                                                                                                                                                                                          |                                                                                                             |                                                                                       | 405                                                                       | -                                                             | -                                                     |                                         | -          | 410        |            |            |            |            | 415<br>Pro | -                        |
|                                                                                                    |                                                                                                                                                                                                                          |                                                                                                             | 420                                                                                   |                                                                           |                                                               |                                                       |                                         | 425        |            |            |            |            | 430        |            |                          |
| Asp                                                                                                | гуз                                                                                                                                                                                                                      | Met<br>435                                                                                                  | Aab                                                                                   | AIa                                                                       | Pne                                                           | AIA                                                   | A1a<br>440                              | Tyr        | Pne        | ser        | AIA        | 445        | IIe        | Asn        | GIΥ                      |
| <pre>&lt;211 &lt;212 &lt;213 &lt;220 &lt;221 &lt;222 &lt;222 &lt;222 &lt;222 &lt;222 &lt;222</pre> | >     FE       L>     NZ       L>     LC       3>     OT       D>     FE       L>     NZ       L>     CT       D>     FE       L>     NZ       D>     FE       L>     NZ       D>     FE       L>     NZ       L>     NZ | ENGTH<br>PE:<br>CGANI<br>CATUF<br>ME/H<br>CATUF<br>ME/H<br>CATUF<br>CATUF<br>ME/H<br>CATUF<br>ME/H<br>CATUF | H: 68<br>DNA<br>SM:<br>ESM:<br>EY:<br>ON:<br>INFO<br>EY:<br>INFO<br>EY:<br>EY:<br>ON: | 335<br>Per:<br>CDS<br>(160<br>DRMA<br>CDS<br>(342<br>DRMA<br>miso<br>(682 | illa<br>D8).<br>TION<br>39).<br>TION<br>c_fea<br>15).<br>TION | . (23:<br>: Otl<br>: (47)<br>: SA'<br>ature<br>. (68: | 30)<br>ner (<br>35)<br>F208<br>2<br>15) | ORF        | a, (       | or t       |            |            |            |            |                          |
| <400                                                                                               | )> SE                                                                                                                                                                                                                    | QUE                                                                                                         | ICE :                                                                                 | 4                                                                         |                                                               |                                                       |                                         |            |            |            |            |            |            |            |                          |
|                                                                                                    |                                                                                                                                                                                                                          |                                                                                                             | _                                                                                     |                                                                           |                                                               | _                                                     |                                         |            |            |            |            | _          |            |            | gacggt 60                |
| CEE                                                                                                |                                                                                                                                                                                                                          |                                                                                                             |                                                                                       |                                                                           |                                                               |                                                       |                                         |            |            |            |            |            |            |            | aactgg 120<br>gatttc 180 |
| aaca                                                                                               | acac                                                                                                                                                                                                                     | ill e                                                                                                       |                                                                                       |                                                                           |                                                               |                                                       |                                         |            |            |            |            |            |            |            | -                        |
|                                                                                                    |                                                                                                                                                                                                                          |                                                                                                             |                                                                                       |                                                                           |                                                               |                                                       |                                         |            |            |            | taa        |            |            | ttaa       | acaaaa 240               |
| ggco                                                                                               | ctatt                                                                                                                                                                                                                    | .gg t                                                                                                       | taa                                                                                   | aaaaa                                                                     | at ga                                                         | agct                                                  | gatti                                   | c aad      | caaa       | aatt       |            | cgcga      | aat 1      |            | acaaaa 240<br>gcgatc 300 |

38

# US 9,074,215 B2

39

### -continued

|            |           |              |           |           |            |           |           |           |           |            | -         | con       | tın       | ued        |            |      |
|------------|-----------|--------------|-----------|-----------|------------|-----------|-----------|-----------|-----------|------------|-----------|-----------|-----------|------------|------------|------|
| aagt       | tggg      | gta a        | acgco     | caggo     | gt t       | ttcc      | cagto     | c ace     | gacgi     | tgt        | aaa       | acga      | gg        | ccagt      | cgagcg     | 420  |
| cgco       | gtaat     | ac o         | gacto     | cacta     | at a       | gggc      | gaati     | ggs       | gtaco     | ggg        | ccc       | cccct     | ccg .     | aggto      | cgacgg     | 480  |
| tato       | cgata     | ag o         | cttga     | atato     | cg a       | attc      | ctgca     | a gco     | ccgg      | ggga       | tcca      | actaç     | gtt       | ctaga      | aagatg     | 540  |
| aaga       | agaca     | aaa a        | acat      | cgact     | ca c       | ttgc      | cctt      | g tg      | tttg      | ggca       | aaat      | ttaaa     | att -     | aatgt      | caattg     | 600  |
| taat       | tgtg      | gag a        | atgtę     | gtgti     | ca g       | taat      | tatgo     | c tai     | tgtgi     | gtg        | ttag      | gtaat     | ta        | tgaga      | atgtgt     | 660  |
| gtgt       | ttgt      | aa 1         | tttę      | gagat     | tg t       | cttt      | tcct      | c act     | ttta      | caaa       | taa       | ttaat     | gt.       | attt       | tatgca     | 720  |
| tato       | ctatt     | tc 1         | tctta     | attci     | t t        | tcata     | acaaa     | a cci     | tgca      | gca        | taa       | gtct      | caa       | tcat       | gcattg     | 780  |
| gatt       | cttt      | at o         | gccti     | tgtca     | aa t       | ttct      | tttt      | g ta      | caaa      | cctc       | atg       | catci     | cca .     | atcat      | gcatt      | 840  |
| ggat       | tctt      | at a         | actci     | tcat      | ct c       | aatti     | tatat     | c gea     | aaga      | gtaa       | aget      | taagt     | tat -     | atcad      | catgca     | 900  |
| ttgg       | gatto     | ca d         | cttta     | atato     | ca a       | attga     | attto     | t tt      | gataa     | aatc       | acat      | tgcti     | tt (      | gtcaç      | gccatc     | 960  |
| acat       | gcat      | tg o         | gatto     | ccact     | t t        | atat      | caaat     | t taa     | attt      | ettg       | ata       | aatca     | aca       | tactt      | ttgtc      | 1020 |
| ggco       | attt      | ca 1         | tgcat     | ttgga     | at t       | ccact     | tttat     | t ato     | caaat     | tga        | ttt       | tttga     | ata -     | aatca      | acatgc     | 1080 |
| tttt       | gtco      | ggc 1        | tage      | ccat      | gc t       | ttgt      | ctata     | a cat     | tatci     | cag        | aaa       | atgca     | aca       | tcaaa      | aagaaa     | 1140 |
| ctca       | aaaca     | aa a         | atcci     | tcaat     | ca c       | ctta      | ccaca     | a tci     | tttca     | aact       | tca       | cttt      | aga       | aaaat      | gtctg      | 1200 |
| caca       | atgaa     | aa 1         | ttctç     | gatgi     | t g        | aatca     | aaact     | c ca      | agtto     | ctaa       | tta       | ttctç     | gat       | tctaa      | acgaac     | 1260 |
| ttga       | atgaa     | atg g        | gcta      | gage      | ga g       | gtta      | tgaaa     | a aat     | tatco     | gtga       | agt       | tgata     | agt -     | ataat      | ccaga      | 1320 |
| atgt       | gcto      | at a         | aaata     | aatco     | cc a       | atct      | ggtt      | g tag     | ggago     | etca       | aact      | ttcta     | aca       | gtcaç      | gaagaa     | 1380 |
| ggta       | attgt     | :ga 1        | tagg      | gaaco     | gt g       | agaat     | tggt      | g aag     | gage      | gttt       | gate      | gaaaq     | gac       | tatt       | tgtct      | 1440 |
| ctaa       | atcca     | ac g         | gtati     | tete      | ca g       | agct      | cttco     | c ga      | cgate     | gatt       | tca       | catgo     | cag .     | aaato      | cacttt     | 1500 |
| ttct       | tcgt      | at a         | agtg      | gaggo     | cc g       | ttaci     | tacca     | a atg     | gatga     | acta       | ttt       | tcaa      | cag       | aggco      | caaatt     | 1560 |
| gcad       | egggt     | ag a         | aaaa      | ggtci     | t t        | cacca     | attgi     | z aa      | aaato     | gtac       | agga      | agct      | -         | agg        | -          | 1616 |
|            |           |              |           |           |            |           |           |           |           |            |           |           | Met<br>1  | Arg        | vai        |      |
|            |           |              |           |           |            |           |           |           |           |            |           |           |           | cga        |            | 1664 |
| ьeu        | Ala<br>5  | ıyr          | стλ       | нта       | ser        | Ala<br>10 | чар       | va⊥       | vai       | чаb        | GIu<br>15 | ıyr       | ьeu       | Arg        | Met        |      |
|            |           |              |           |           |            |           |           |           |           |            |           |           |           | ggt        |            | 1712 |
| Ser<br>20  | лта       | ınr          | val       | rnr       | Arg<br>25  | чар       | лта       | va⊥       | тте       | H15<br>30  | гпе       | va⊥       | сти       | Gly        | Val<br>35  |      |
|            |           |              |           |           |            |           |           |           |           |            |           |           |           | caa        |            | 1760 |
| цте        | Ser       | Суз          | Phe       | Ser<br>40 | Asp        | Thr       | Tyr       | Leu       | Arg<br>45 | гла        | Pro       | Asn       | GIn       | Gln<br>50  | Aab        |      |
|            |           |              |           |           |            |           |           |           |           |            |           |           |           | ggc        |            | 1808 |
| ьеи        | Ala       | Arg          | Leu<br>55 | ьeu       | туr        | ∨a⊥       | gtà       | Glu<br>60 | GIN       | Arg        | σтλ       | Phe       | Pro<br>65 | Gly        | Met        |      |
|            |           |              |           |           |            |           |           |           |           |            |           |           |           | cct        |            | 1856 |
| 11e        | GΙΆ       | Ser<br>70    | ile       | Asp       | Сүз        | Met       | His<br>75 | Trp       | Glu       | Trp        | Thr       | Asn<br>80 | Сүз       | Pro        | Asn        |      |
| -          |           | -            |           |           |            |           |           | -         | -         |            | -         |           |           | atc        |            | 1904 |
| Ala        | Trp<br>85 | Ala          | Gly       | Gln       | Phe        | Thr<br>90 | Gly       | Arg       | Ser       | Gly        | Lуя<br>95 | Ser       | Thr       | Ile        | Ile        |      |
| ttg        | gaa       | gct          | gtt       | gca       | tca        | tat       | gat       | tta       | tgg       | ata        | tgg       | cat       | gcg       | ttt        | ttt        | 1952 |
| Leu<br>100 | Glu       | Ala          | Val       | Ala       | Ser<br>105 | Tyr       | Asp       | Leu       | Trp       | Ile<br>110 | Trp       | His       | Ala       | Phe        | Phe<br>115 |      |
|            | aca       | tca          | qat       | qca       |            | aat       | qat       | att       | aat.      |            | ctc       | cac       | qat.      | tct        |            | 2000 |
|            |           |              |           |           | -          |           | -         |           |           | -          |           |           |           | Ser<br>130 |            |      |
|            | +++       | 2 <i>6</i> + | ast       |           | ++-        | a         | ac+       | 000       |           | 005        | ast       | a++       |           |            | atc        | 2040 |
|            |           | -            | Asp       | -         |            | -         |           | Arg       | -         |            |           | -         | Ser       | tac<br>Tyr |            | 2048 |
|            |           |              | 135       |           |            |           |           | 140       |           |            |           |           | 145       |            |            |      |

**40** 

| gtc aat ggt cgc caa aat gat aga gca tat tat ctc acc gat ggc ata<br>Val Asn Gly Arg Gln Asn Asp Arg Ala Tyr Tyr Leu Thr Asp Gly Ile<br>150 155 160     | 2096 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| tat cct tca tgg gct gca ttt gta aag tca atc aca tct cct atg act<br>Tyr Pro Ser Trp Ala Ala Phe Val Lys Ser Ile Thr Ser Pro Met Thr<br>165 170 175     | 2144 |
| cga aag tat aag ttg ttt gtt caa cac caa gaa gct gct aga aaa gat<br>Arg Lys Tyr Lys Leu Phe Val Gln His Gln Glu Ala Ala Arg Lys Asp<br>180 185 190 195 | 2192 |
| gta gaa cgg gcc ttt gga gtt cta caa gct cgt ttt gca ttt att cga<br>Val Glu Arg Ala Phe Gly Val Leu Gln Ala Arg Phe Ala Phe Ile Arg<br>200 205 210     | 2240 |
| cgt cca tgt ctt gtt tgg gac aag gtt ttg atg gga aaa att atg atg<br>Arg Pro Cys Leu Val Trp Asp Lys Val Leu Met Gly Lys Ile Met Met<br>215 220 225     | 2288 |
| gct tgt atc atc ata cac aat atg att gtg gag gat gaa tga<br>Ala Cys Ile Ile Ile His Asn Met Ile Val Glu Asp Glu<br>230 235 240                         | 2330 |
| gacacatacc taaactatta tgatcccaca gagtttttga cagatgagtc ttcaggagga                                                                                     | 2390 |
| gatgetgaae etttteaeta etetaetgaa egeateaeaa gtttategge ttatatgaet                                                                                     | 2450 |
| aatagggatc aacttcacaa cagagaggct catagagctc ttaaagagga tttgatcgag                                                                                     | 2510 |
| cacatatqqa aaaaattcqq cactaactaa atatataatt tacqttttat qcactcqtaa                                                                                     | 2570 |
| tttaaaattt catgtqtctc attgtaqttt atttaattat qttttcactc ttgtaatttt                                                                                     | 2630 |
| tattttgttg tgaagtaaat tatgaattta taattatatg ggtaatttt tgataattat                                                                                      | 2690 |
|                                                                                                                                                       | 2750 |
| gcaattaaaa ataattaata ttttttaaat gcaagagaaa aatgttattt taataacatg                                                                                     | 2810 |
| ttottattaa aaaataaaat gataaatatt ttatgtaggt tgggagaaaa tgaaaaaata                                                                                     | 2810 |
| atattttatt tgaaggttgg gttggatgag gtcactgatg ggagtataaa taatactccc                                                                                     | 2930 |
| tccgtcccat aattattgtc cattattcct ttttgggatg tcccaaaatt atagtcctat<br>tctaaattgg gattgtattt aaatattctt ttacaaatat aaccctattt gatatagtat                | 2990 |
|                                                                                                                                                       |      |
| gaatgcaatt aatatagtaa aaaaataagg gcaatatagg ataattattg taaattgtat                                                                                     | 3050 |
| atttccaata catattaaat gtgatttett aatetgtgtg aaaataggaa gtggaetata                                                                                     | 3110 |
| attatgggac ggagggagta taaagttgga ggttgtggat gtggaggaga aagaaattaa                                                                                     | 3170 |
| tattttattt aaagattgga ttaaaggagg tcactgatgt gggtagtctt agaggaaatg                                                                                     | 3230 |
| tagtettaga ggaaatetge eeageaaat aaaataataa gtaaataaat aaactaaata                                                                                      | 3290 |
| tgtattgaat gogacatota goaatatago cacatatata gtgoagtago aogoagogot                                                                                     | 3350 |
| cgttactcgt cagtcgtcaa agaatggtaa gtatagaaaa gcatctttaa ataacacacc                                                                                     | 3410 |
| aaaaaccaca gctacgttca acaccgcc atg acc acc acc gtg atc gaa acg<br>Met Thr Thr Thr Val Ile Glu Thr<br>245                                              | 3462 |
| tgt aga gtt ggg cca ccg ccg gac tcg gtg gcg gag caa tcg ttg ccg<br>Cys Arg Val Gly Pro Pro Pro Asp Ser Val Ala Glu Gln Ser Leu Pro<br>250 255 260     | 3510 |
| ctc aca ttc ttc gac atg acg tgg ctg cat ttt cat ccc atg ctt cagLeu Thr Phe Phe Asp Met Thr Trp Leu His Phe His Pro Met Leu Gln265270275280            | 3558 |
| ctc ctc ttc tac gaa ttc cct tgt tcc aag caa cat ttc tca gaa tcc<br>Leu Leu Phe Tyr Glu Phe Pro Cys Ser Lys Gln His Phe Ser Glu Ser<br>285 290 295     | 3606 |
| atc att cca aaa ctc aaa caa tct ctc tct aaa act ctc ata cac ttc<br>Ile Ile Pro Lys Leu Lys Gln Ser Leu Ser Lys Thr Leu Ile His Phe                    | 3654 |

|   |   |   |     |   |                   |   |   |     |   |   | - | con | tin | ued |   |      |
|---|---|---|-----|---|-------------------|---|---|-----|---|---|---|-----|-----|-----|---|------|
|   |   |   | 300 |   |                   |   |   | 305 |   |   |   |     | 310 |     |   |      |
|   |   |   |     | - | aat<br>Asn        |   |   |     |   |   |   | -   |     |     | - | 3702 |
|   |   |   |     |   | cta<br>Leu        | - |   | -   | - | - |   |     |     |     | - | 3750 |
| - |   | - | -   | - | ttc<br>Phe<br>350 | - | - |     | - |   |   | -   | -   | -   |   | 3798 |
|   |   |   |     |   | aac<br>Asn        |   |   |     |   |   |   |     |     |     |   | 3846 |
|   |   |   |     |   | ctc<br>Leu        |   |   |     |   |   |   |     |     |     |   | 3894 |
|   |   |   | -   |   | gtc<br>Val        |   |   |     |   | - | - |     |     |     | - | 3942 |
|   |   |   |     |   | ttt<br>Phe        |   |   |     |   |   |   |     |     |     |   | 3990 |
| - |   |   |     | - | gat<br>Asp<br>430 | - | - | -   |   |   |   |     | -   |     | - | 4038 |
|   | - | - |     | - | ata<br>Ile        |   |   | -   | - |   |   | -   | -   |     |   | 4086 |
|   |   |   |     |   | aaa<br>Lys        |   |   |     |   |   |   |     |     |     |   | 4134 |
|   |   |   |     |   | cga<br>Arg        |   |   |     |   |   |   |     |     |     |   | 4182 |
|   |   |   |     |   | tcg<br>Ser        |   |   |     |   |   |   |     |     |     |   | 4230 |
|   |   |   |     | - | gcg<br>Ala<br>510 |   | - | -   |   | - |   | -   |     | -   | - | 4278 |
|   |   |   |     | - | gat<br>Asp        | - | - |     | - | - |   | -   | -   |     |   | 4326 |
|   |   |   |     |   | cta<br>Leu        |   |   |     |   |   |   |     |     |     |   | 4374 |
|   |   |   |     |   | tgc<br>Cys        |   | - |     |   | - | - | -   | -   |     |   | 4422 |
| - |   | - |     |   | gag<br>Glu        |   |   |     |   | - |   | -   |     | -   |   | 4470 |
|   |   |   |     |   | aaa<br>Lys<br>590 |   |   |     |   |   |   |     |     |     |   | 4518 |
|   |   |   |     |   | ctg<br>Leu        |   |   |     |   |   |   |     |     |     |   | 4566 |

ttt tcg gtg gca gga tcg agc aag cta gat ctt tac ggt gca gat ttt 4614

44

| Phe Ser Val Ala Gly Ser Ser Lys Leu Asp Leu Tyr Gly Ala Asp Phe<br>620 625 630                                                                    |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| gga tgg ggg aag gcg aga aag caa gaa ata ttg tcg att gat ggg gag<br>Gly Trp Gly Lys Ala Arg Lys Gln Glu Ile Leu Ser Ile Asp Gly Glu<br>635 640 645 | 4662 |
| aaa tat gca atg acg ctt tgt aaa gcc agg gat ttc gaa gga gga ttg<br>Lys Tyr Ala Met Thr Leu Cys Lys Ala Arg Asp Phe Glu Gly Gly Leu<br>650 655 660 | 4710 |
| gag gtt tgc ttg tct ttg cct aag gac aaa atg gat gct ttt gct gctGlu Val Cys Leu Ser Leu Pro Lys Asp Lys Met Asp Ala Phe Ala Ala665670675680        | 4758 |
| tat ttt tca gcg gga att aat ggt taa taaatgtatg taattaaact<br>Tyr Phe Ser Ala Gly Ile Asn Gly<br>685                                               | 4805 |
| aatattatta tgtaacaatt aattaagtgt tgagtaacgt gaagaataat atcttttacc                                                                                 | 4865 |
| tattatatat ttatgagttg gttcaaataa aatcacttca tttattgtat taaccgttta                                                                                 | 4925 |
| gtgttcttct caccatattt tggtgctatt ttttaaaaaa tgttttttt attgtatttt                                                                                  | 4985 |
| agtattaatt gttttaccac taaaattaca gtaaaatgca agatagttta atttttacat                                                                                 | 5045 |
| ttacatatga aacacattct ctttataacc aacctctcta tatatata                                                                                              | 5105 |
| gtatgtatac acatgtatga atactagaaa tatatcttaa accatccatc cttcaaaaat                                                                                 | 5165 |
| ttcgggggcca tattgcatgg tgacattata atatttgata atttcttcga acacgttatt                                                                                | 5225 |
| aattcaattt aataattcta ataaaaagac gctcagacaa tatatgtaga taggatcggc                                                                                 | 5285 |
| ccaaaggggt gtctgggtgg gctgtcgccc atgggccccg aaatcttagg ggcaaaaaaa                                                                                 | 5345 |
| aaaaaattca ttatacctag ggcaaaaaaa ttaccgctct tcacttctct gcctctctcc                                                                                 | 5405 |
| ctcatccctc gttcctcctc tctcttccct atgtacgcct ctttcactcc ctccccctct                                                                                 | 5465 |
| ctcagttctc tatcacttgt attttgtatt gaaaacttgt tgaaaactaa accaaaaata                                                                                 | 5525 |
| gaaaaaggta tagaaaattt gaaaacaaag gttgtttttt tgtgttgctg cagttcccaa                                                                                 | 5585 |
| acttgeegag ttgeegaett geegtgttga attgttatat atgttaaaag eetaaaatat                                                                                 | 5645 |
| atcctttcag aattgagatg gattgttgta actatcaggt ttttttatt gagaatttta                                                                                  | 5705 |
|                                                                                                                                                   | E76E |

6605

ccaaaggggt gtctgggtgg aaaaaattca ttatacctag ctcatccctc gttcctcctc ctcagttctc tatcacttgt gaaaaaggta tagaaaattt acttgccgag ttgccgactt atcctttcag aattgagatg gatcaattag ttatcttgta atttttatt cttttaata caatactccc tccatcccaa 5765 tagcaaggtc cccttgctat tgggcacggg tattaaggag gaggattatt ataatgaaaa 5825 ttaatataaa gtaagtggat tccactttat taaggaatat tataatcaaa agtaatataa 5885 agtaagtgga ttccacttta attaggacac taattatttt cttttttggt atgagacttt 5945 gctattggga catcccaaaa aggcaaaaga gaccttgcta ttaggacggt ggacgtgctg 6005 ccgaggcacg caaattaatt tacctttcct cttctatact aactcgtagt agcggcgagt 6065 6125 aaaqqtcqaa ccctcaaqqa qcaattqaac taqatqtqct attaqaaata aaataaacac aagtgagagg ggagtttttg gtttcaattt aactaaaact aattatgaaa atgaaaaaac 6185 aaatataaaa cataaacagg tagacgaaat atgataaaga tagaattcta gttctcggtt 6245 cagttatcac ctttctccaa gtatttcatg aataatgcaa cgcctctttt catacaactt 6305 agaatcgatg tccaaaggtt aatatcaagc tttatttacc taattgtctc gtacgattag 6365 ttaactaaaa caagctcttt aattaactct actcaattag ataacctaga ataagctctc 6425 tagageggee gecacegegg tggageteea gettttgtte eetttagtga gggttaattg 6485 cgcgcttggc gtaatcatgg tcatagctgt ttcctgtgtg aaattgttat ccgctcacaa 6545

ttccacacaa catacgagcc ggaagcataa agtgtaaagc ctggggtgcc taatgagtga

47

|                                                                         |                       |            |            |            |            |            |            |            |            | con        | τın        | uea        |            |      |
|-------------------------------------------------------------------------|-----------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------|
| gctaactcac                                                              | atta                  | attgo      | cg ti      | tgcg       | ctcad      | c tgo      | cccgo      | ttt        | ccaç       | gtcg       | gga a      | aacct      | gtcgt      | 6665 |
| gccagctgca                                                              | ttaa                  | tgaai      | tc g       | gcca       | acgco      | g cg       | gggaq      | gagg       | cgg        | gttg       | cgt a      | attgo      | ggeege     | 6725 |
| tcttccgctt                                                              | cctt                  | ggtta      | ac ti      | tgaci      | tcgct      | gcć        | gctc       | ggcc       | gtc        | ggct       | gcg g      | gcgaç      | gcggta     | 6785 |
| tcaagctcac                                                              | tcaa                  | aggco      | gg ta      | aata       | ccggı      | n tat      | ccad       | caga       | atca       | agggg      | gat        |            |            | 6835 |
| <210> SEQ ]<br><211> LENG]<br><212> TYPE:<br><213> ORGAN                | TH: 2<br>PRT          | 40         | illa       | fru        | tesce      | ens        |            |            |            |            |            |            |            |      |
| <400> SEQUE                                                             | INCE :                | 5          |            |            |            |            |            |            |            |            |            |            |            |      |
| Met Arg Val<br>1                                                        | . Leu                 | Ala<br>5   | Tyr        | Gly        | Ala        | Ser        | Ala<br>10  | Asp        | Val        | Val        | Asp        | Glu<br>15  | Tyr        |      |
| Leu Arg Met                                                             | Ser 20                | Ala        | Thr        | Val        | Thr        | Arg<br>25  | Asp        | Ala        | Val        | Ile        | His<br>30  | Phe        | Val        |      |
| Glu Gly Val<br>35                                                       | . Ile                 | Ser        | Сүз        | Phe        | Ser<br>40  | Asp        | Thr        | Tyr        | Leu        | Arg<br>45  | ГÀа        | Pro        | Asn        |      |
| Gln Gln Asr<br>50                                                       | ) Leu                 | Ala        | Arg        | Leu<br>55  | Leu        | Tyr        | Val        | Gly        | Glu<br>60  | Gln        | Arg        | Gly        | Phe        |      |
| Pro Gly Met<br>65                                                       | : Ile                 | Gly        | Ser<br>70  | Ile        | Asp        | Сув        | Met        | His<br>75  | Trp        | Glu        | Trp        | Thr        | Asn<br>80  |      |
| Cys Pro Asr                                                             | n Ala                 | Trp<br>85  | Ala        | Gly        | Gln        | Phe        | Thr<br>90  | Gly        | Arg        | Ser        | Gly        | Lys<br>95  | Ser        |      |
| Thr Ile Ile                                                             | e Leu<br>100          | Glu        | Ala        | Val        | Ala        | Ser<br>105 | Tyr        | Asp        | Leu        | Trp        | Ile<br>110 | Trp        | His        |      |
| Ala Phe Phe<br>115                                                      |                       | Thr        | Ser        | Gly        | Ala<br>120 | Суз        | Asn        | Asp        | Ile        | Asn<br>125 | Val        | Leu        | His        |      |
| Gly Ser Pro<br>130                                                      | ) Ile                 | Phe        | Ser        | Asp<br>135 | Val        | Leu        | Glu        | Gly        | Arg<br>140 | Ala        | Pro        | His        | Val        |      |
| Ser Tyr Ile<br>145                                                      | e Val                 | Asn        | Gly<br>150 | Arg        | Gln        | Asn        | Aab        | Arg<br>155 | Ala        | Tyr        | Tyr        | Leu        | Thr<br>160 |      |
| Asp Gly Ile                                                             | e Tyr                 | Pro<br>165 | Ser        | Trp        | Ala        | Ala        | Phe<br>170 | Val        | Lys        | Ser        | Ile        | Thr<br>175 | Ser        |      |
| Pro Met Thr                                                             | Arg<br>180            | Lys        | Tyr        | ГЛа        | Leu        | Phe<br>185 | Val        | Gln        | His        | Gln        | Glu<br>190 | Ala        | Ala        |      |
| Arg Lys Asp<br>195                                                      |                       | Glu        | Arg        | Ala        | Phe<br>200 | Gly        | Val        | Leu        | Gln        | Ala<br>205 | Arg        | Phe        | Ala        |      |
| Phe Ile Arg<br>210                                                      | g Arg                 | Pro        | Суз        | Leu<br>215 | Val        | Trp        | Asp        | Lys        | Val<br>220 | Leu        | Met        | Gly        | ГЛа        |      |
| Ile Met Met<br>225                                                      | : Ala                 | Суз        | Ile<br>230 | Ile        | Ile        | His        | Asn        | Met<br>235 | Ile        | Val        | Glu        | Asp        | Glu<br>240 |      |
| <210> SEQ J<br><211> LENGJ<br><212> TYPE:<br><213> ORGAN<br><400> SEQUE | TH: 4<br>PRT<br>NISM: | 48<br>Per: | illa       | frui       | tesce      | ens        |            |            |            |            |            |            |            |      |
| Met Thr Thr                                                             |                       | Val        | Ile        | Glu        | Thr        | Cys        | -          | Val        | Gly        | Pro        | Pro        |            | Asp        |      |
| 1<br>Ser Val Ala                                                        | i Glu                 | 5<br>Gln   | Ser        | Leu        | Pro        | Leu        | 10<br>Thr  | Phe        | Phe        | Asp        | Met        | 15<br>Thr  | Trp        |      |
| Leu His Phe                                                             | 20                    |            |            |            |            | 25         |            |            |            |            | 30         |            |            |      |
| 35                                                                      |                       |            |            |            | 40         |            |            |            | -          | 45         |            |            | -          |      |
| Ser Lys Glr                                                             |                       | r ne       | PGT        | JIU        | Det        | 116        | - T.G      | 110        | ыүы        | Jeu        | чүн        | 1110       | SCI        |      |

|            |            |            |            |            |            |            |            |            |            |            |            | COII       |            | ueu        |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|            | 50         |            |            |            |            | 55         |            |            |            |            | 60         |            |            |            |            |
| Leu<br>65  | Ser        | Lys        | Thr        | Leu        | Ile<br>70  | His        | Phe        | Phe        | Pro        | Leu<br>75  | Ser        | Суз        | Asn        | Leu        | Ile<br>80  |
| Tyr        | Pro        | Ser        | Ser        | Pro<br>85  | Glu        | Lys        | Met        | Pro        | Glu<br>90  | Phe        | Arg        | Tyr        | Leu        | Ser<br>95  | Gly        |
| Asp        | Ser        | Val        | Ser<br>100 | Phe        | Thr        | Ile        | Ala        | Glu<br>105 | Ser        | Ser        | Asp        | Asp        | Phe<br>110 | Asp        | Asp        |
| Leu        | Val        | Gly<br>115 | Asn        | Arg        | Ala        | Glu        | Ser<br>120 | Pro        | Val        | Arg        | Leu        | Tyr<br>125 | Asn        | Phe        | Val        |
| Pro        | Lys<br>130 | Leu        | Pro        | Gln        | Ile        | Val<br>135 | Glu        | Glu        | Ser        | Asp        | Arg<br>140 | Lys        | Leu        | Phe        | Gln        |
| Val<br>145 | Phe        | Ala        | Val        | Gln        | Val<br>150 | Thr        | Leu        | Phe        | Pro        | Gly<br>155 | Arg        | Gly        | Val        | Gly        | Ile<br>160 |
| Gly        | Ile        | Ala        | Thr        | His<br>165 | His        | Thr        | Val        | Ser        | Asp<br>170 | Ala        | Pro        | Ser        | Phe        | Leu<br>175 | Ala        |
| Phe        | Ile        | Thr        | Ala<br>180 | Trp        | Ala        | Trp        | Met        | Ser<br>185 | Lys        | His        | Ile        | Glu        | Asp<br>190 | Glu        | Asp        |
| Glu        | Glu        | Phe<br>195 | Гла        | Ser        | Leu        | Pro        | Val<br>200 | Phe        | Asp        | Arg        | Ser        | Val<br>205 | Ile        | Гла        | Tyr        |
| Pro        | Thr<br>210 | Lys        | Phe        | Asp        | Ser        | Ile<br>215 | Tyr        | Trp        | Lys        | Гла        | Ala<br>220 | Leu        | Lys        | Phe        | Pro        |
| Leu<br>225 | Gln        | Ser        | Arg        | His        | Pro<br>230 | Ser        | Leu        | Pro        | Thr        | Asp<br>235 | Arg        | Ile        | Arg        | Thr        | Thr<br>240 |
| Phe        | Val        | Phe        | Thr        | Gln<br>245 | Ser        | Glu        | Ile        | Lys        | Lys<br>250 | Leu        | Lys        | Gly        | Ser        | Ile<br>255 | Gln        |
| Ser        | Arg        | Val        | Pro<br>260 | Ser        | Leu        | Val        | His        | Leu<br>265 | Ser        | Ser        | Phe        | Val        | Ala<br>270 | Ile        | Ala        |
| Ala        | Tyr        | Met<br>275 | Trp        | Ala        | Gly        | Val        | Thr<br>280 | Lys        | Ser        | Leu        | Thr        | Ala<br>285 | Asp        | Glu        | Asp        |
| His        | Asp<br>290 | Asb        | Gly        | Asp        | Ala        | Phe<br>295 | Phe        | Leu        | Ile        | Pro        | Val<br>300 | Asp        | Leu        | Arg        | Pro        |
| Arg<br>305 | Leu        | Asb        | Pro        | Pro        | Val<br>310 | Pro        | Glu        | Asn        | Tyr        | Phe<br>315 | Gly        | Asn        | Сүз        | Leu        | Ser<br>320 |
| Tyr        | Ala        | Leu        | Pro        | Arg<br>325 | Met        | Arg        | Arg        | Arg        | Glu<br>330 | Leu        | Val        | Gly        | Glu        | Lys<br>335 | Gly        |
| Val        | Phe        |            |            | Ala        |            |            |            | Ala<br>345 |            |            |            | -          | Lys<br>350 |            | Ile        |
| Asn        | Aab        | Lys<br>355 | Arg        | Ile        | Leu        | Glu        | Thr<br>360 | Val        | Glu        | LYa        | Trp        | Ser<br>365 | Leu        | Glu        | Ile        |
| Arg        | Glu<br>370 | Ala        | Leu        | Gln        | Lys        | Ser<br>375 | Tyr        | Phe        | Ser        | Val        | Ala<br>380 | Gly        | Ser        | Ser        | Lys        |
| Leu<br>385 | Aab        | Leu        | Tyr        | Gly        | Ala<br>390 | Asp        | Phe        | Gly        | Trp        | Gly<br>395 | Lys        | Ala        | Arg        | Lys        | Gln<br>400 |
| Glu        | Ile        | Leu        | Ser        | Ile<br>405 | Asp        | Gly        | Glu        | Гла        | Tyr<br>410 | Ala        | Met        | Thr        | Leu        | Сув<br>415 | Lys        |
| Ala        | Arg        | Asp        | Phe<br>420 | Glu        | Gly        | Gly        | Leu        | Glu<br>425 | Val        | Сув        | Leu        | Ser        | Leu<br>430 | Pro        | Lys        |
| Asp        | Lys        | Met<br>435 | Asp        | Ala        | Phe        | Ala        | Ala<br>440 | Tyr        | Phe        | Ser        | Ala        | Gly<br>445 | Ile        | Asn        | Gly        |
|            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |

<210> SEQ ID NO 7 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial

52

| -continued                                                                                                                                                                                                                                                                                                                                              |    |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| -<br><220> FEATURE:<br><223> OTHER INFORMATION: HindIII containing primer                                                                                                                                                                                                                                                                               |    |  |
| <400> SEQUENCE: 7                                                                                                                                                                                                                                                                                                                                       |    |  |
| aagettaaet attatgatee cacagag                                                                                                                                                                                                                                                                                                                           | 27 |  |
| <210> SEQ ID NO 8<br><211> LENGTH: 24<br><212> TYPE: DNA<br><213> ORGANISM: Artificial<br><220> FEATURE:<br><223> OTHER INFORMATION: BamHI containing primer                                                                                                                                                                                            |    |  |
| <400> SEQUENCE: 8                                                                                                                                                                                                                                                                                                                                       |    |  |
| ggateeggeg gtgttgaaeg tage                                                                                                                                                                                                                                                                                                                              | 24 |  |
| <pre>&lt;210&gt; SEQ ID NO 9 &lt;211&gt; LENGTH: 35 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial &lt;220&gt; FEATURE: &lt;222&gt; OTHER INFORMATION: Primer C1 &lt;220&gt; FEATURE: &lt;221&gt; NAME/KEY: misc_feature &lt;223&gt; OTHER INFORMATION: primer C1 &lt;400&gt; SEQUENCE: 9</pre>                                                 |    |  |
| gtacatattg tcgttagaac gcgtaatacg actca                                                                                                                                                                                                                                                                                                                  | 35 |  |
| <pre>&lt;210&gt; SEQ ID NO 10<br/>&lt;211&gt; LENGTH: 24<br/>&lt;212&gt; TYPE: DNA<br/>&lt;213&gt; ORGANISM: Artificial<br/>&lt;220&gt; FEATURE:<br/>&lt;223&gt; OTHER INFORMATION: Primer BP40-i5<br/>&lt;220&gt; FEATURE:<br/>&lt;221&gt; NAME/KEY: misc_feature<br/>&lt;223&gt; OTHER INFORMATION: Primer BP40-i5<br/>&lt;400&gt; SEQUENCE: 10</pre> |    |  |
| aggtgcatga tcggaccata cttc                                                                                                                                                                                                                                                                                                                              | 24 |  |
| <pre>&lt;210&gt; SEQ ID NO 11 &lt;211&gt; LENGTH: 35 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Primer C2 &lt;220&gt; FEATURE: &lt;221&gt; NAME/KEY: misc_feature &lt;223&gt; OTHER INFORMATION: Primer C2 &lt;400&gt; SEQUENCE: 11</pre>                                               |    |  |
| cgttagaacg cgtaatacga ctcactatag ggaga                                                                                                                                                                                                                                                                                                                  | 35 |  |
| <210> SEQ ID NO 12<br><211> LENGTH: 25<br><212> TYPE: DNA<br><213> ORGANISM: Artificial<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer BP40-i7<br><220> FEATURE:<br><221> NAME/KEY: misc_feature<br><223> OTHER INFORMATION: Primer BP40-i7                                                                                                       |    |  |
| <400> SEQUENCE: 12                                                                                                                                                                                                                                                                                                                                      |    |  |
| gaccatactt cttagcgagt ttggc                                                                                                                                                                                                                                                                                                                             | 25 |  |

<210> SEQ ID NO 13 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: Primer BP40pro-F <220> FEATURE: <221> NAME/KEY: misc\_feature <223> OTHER INFORMATION: Primer BP40pro-F <400> SEQUENCE: 13 actcaaacaa gcatctcgcc atagg 25 <210> SEQ ID NO 14 <211> LENGTH: 2369 <212> TYPE: DNA <213> ORGANISM: Viola x wittrockiana <220> FEATURE: <221> NAME/KEY: misc\_feature <223> OTHER INFORMATION: Plasmid pSFL614 <400> SEQUENCE: 14 actcaaacaa gcatctcgcc aatggttctc taaattttct tctactctca tctcacgtgg 60 tttccgccaa tctgtctctg attacagcct tttcacatat gtcaaaggtt cagttagtgt 120 ttttqtcctt qtttatqtcq acqatataat cqttactqqc aacaatctaq atqccatttc 180 tgagactaaa caattcctcg caaattcatt ctctattaaa gatctcggca ctcttcgata 240 ttttcttgga atcgaagtat ctcgttctac gaaaggtatt ttcttatgtc aacgaaaata 300 cactetegat atteteteag attetggtea cettggatgt egacettete cattteecat 360 ggagcaacat cttcatctac ttcctgatga tggtacacca ctacccgacc catccattta 420 tcgacgtctg gttggtcgac tactttactt gactgtcact cgtcctgata ttcaatatgc 480 agtgaatact cttagtcaat tcatgcaact tcctcgttcg acccatctcg atgcggcaaa 540 tcgagttctc cgatatctca aaggatcagt tggtaaagga atcctccttt cggccactag 600 tcctctttca cttgttggtt ttgctgattc tgactgggct ggttgtccaa ctactcgtcg 660 ttcaactact ggctacatta ccatgcttgg ttcaagtcct atctcttgga aaactaaaaa 720 gcaacccact gtctctcgat cttctgccga agccgaatat cgatcactcg ctgctctcac 780 ttcagagata cagtggcttc attatctact ctcggatctc ggttttcccc ctcaacaacc 840 gattaccgtt cattgtgaca accaagctgc tatacacatc gctaataatc cggttttcca 900 tgaacgaaca aagcacattg agctcgattg tcactttgtt cgtgaaaaaa ttatttctgg 960 totogtotoc accagttatt tgogttooto agatcaactt gotgatattt toacaaaaco 1020 acttggtgca gatgcattta atcaccttat ttccaagttg ggcgtgatcg acatctctct 1080 cccggctcca acttgacggg gggtgttaaa cgtatacaag attttctaat cttgtatatt 1140 tgattttcta atatcttgta tatttgattt tctattatct tgtatttgaa cttttgtatt 1200 teettagtat eaggaaagtt agttgtagat attattttat attteaaate tgtatetaat 1260 acttgeetat ataaaggeea actaateaat gaaatgaaca cateaatttt eteaatttet 1320 cattetetgt tttcatatet attetetatt tteacatttt etgaaaagaa agatgettga 1380 catgatcaga gacagttett tettetteat aetttegtae taaaettete etggteegea 1440 actaatette cateattte ttgtgatett caettgagga tagtetetag aaaaeggeae 1500 ggtcacgctg gataagtgtt taggatccct cgaagttgag ttgcatgaat tttgcgggta 1560 cgcaagtgac ttgactctta tcttggacgt cttatatgct cgaccaaatg ttggccaagt 1620

## US 9,074,215 B2

55

#### -continued

cgggatgctc gggttaagcc tctcttaggt caagtttatg agcgaacccc tttctttgag 1680 ggctctttat ttgccaactc gtctgccatt aaagttctat tagagctcta atgctgtgta 1740 tgtggctacc gatcaccttc attctcagag gaatcctctt ttcgaatttc tggtactttg 1800 aaactagetg etteaattte ageeactega attaaacaet aaaacagaae attgagagga 1860

acgggccctc ttccaaatat agaaagaaac agataatgtc aaaagacaca tcaactaggt 1920 cgagatacct gctcacatgc atcacatcta accaactcga gtcggacgag aaatgagttc 1980 gtaactcgat gataataagg caaaggtcta aaaccacatt cggttggtgg ttgtgttcat 2040 ggaccgatca cgtgccctaa cctaaccccc gcatccatcc accaacagct agtcctcgcc 2100 gagtccccca aagttcctat ttatatcact aaagtccctt tttctcaaca tagacatgca 2160 aacacgagac aacatggcaa ttctagtcac cgacttcgtt gtcgcggcta taattttctt 2220 gatcactcgg ttcttagttc gttctctttt caagaaacca acccgaccgc tccccccggg 2280 teeteteggt tggeeettgg tgggegeeet eeeteteeta ggegeeatge eteaegtege 2340 actagccaaa ctcgctaaga agtatggtc 2369

<210> SEQ ID NO 15 <211> LENGTH: 1102 <212> TYPE: DNA <213> ORGANISM: Viola x wittrockiana <220> FEATURE: <221> NAME/KEY: misc\_feature <223> OTHER INFORMATION: BP40pro <220> FEATURE: <221> NAME/KEY: misc\_feature <222> LOCATION: (1)..(6) <223> OTHER INFORMATION: HindIII <220> FEATURE: <221> NAME/KEY: misc\_feature <222> LOCATION: (1097)..(1102) <223> OTHER INFORMATION: BamHI

<400> SEQUENCE: 15

| aagettgtga tegacatete teteeegget eeaaettgae gggggggtgtt aaaegtata | c 60   |
|-------------------------------------------------------------------|--------|
| aagattttct aatcttgtat atttgatttt ctaatatctt gtatatttga ttttctatta | a 120  |
| tettgtattt gaaettttgt attteettag tateaggaaa gttagttgta gatattatt  | 180    |
| tatatttcaa atctgtatct aatacttgcc tatataaagg ccaactaatc aatgaaatga | a 240  |
| acacatcaat tttctcaatt tctcattctc tgttttcata tctattctct attttcaca  | 300    |
| tttctgaaaa gaaagatgct tgacatgatc agagacagtt ctttcttctt catactttc  | g 360  |
| tactaaactt ctcctggtcc gcaactaatc ttccatcatt ttcttgtgat cttcacttg  | a 420  |
| ggatagtete tagaaaaegg caeggteaeg etggataagt gtttagetag eetegaagt  | 480    |
| gagttgcatg aattttgcgg gtacgcaagt gacttgactc ttatcttgga cgtcttata  | 540    |
| gctcgaccaa atgttggcca agtcgggatg ctcgggttaa gcctctctta ggtcaagtt  | E 600  |
| atgagegaae eeettettt gagggetett tatttgeeaa etegtetgee attaaagtte  | c 660  |
| tattagaget etaatgetgt gtatgtgget accgateace tteattetea gaggaatee  | - 720  |
| cttttcgaat ttctggtact ttgaaactag ctgcttcaat ttcagccact cgaattaaa  | c 780  |
| actaaaacag aacattgaga ggaacgggcc ctcttccaaa tatagaaaga aacagataa  | z 840  |
| gtcaaaagac acatcaacta ggtcgagata cctgctcaca tgcatcacat ctaaccaac  | z 900  |
| cgagtcggac gagaaatgag ttcgtaactc gatgataata aggcaaaggt ctaaaaccad | c 960  |
| attoggttgg tggttgtgtt catggacoga toacgtgood taacotaaco ocogoatoo  | a 1020 |

| US  | 9.0   | )74 | .21 | 5 | <b>B</b> 2 |
|-----|-------|-----|-----|---|------------|
| ~~~ | ~ , ~ |     |     | - |            |

57

| -continued                                                                      |      |
|---------------------------------------------------------------------------------|------|
| tccaccaaca gctagtcctc gccgagtccc ccaaagttcc tatttatatc actaaagtcc               | 1080 |
|                                                                                 |      |
| ctttttctca acatagggat cc                                                        | 1102 |
| <210> SEQ ID NO 16                                                              |      |
| <211> LENGTH: 25                                                                |      |
| <212> TYPE: DNA                                                                 |      |
| <213> ORGANISM: Artificial                                                      |      |
| <220> FEATURE:                                                                  |      |
| <223> OTHER INFORMATION: Primer BP40pro-HindIII-F<br><220> FEATURE:             |      |
| <220> FEALORE:<br><221> NAME/KEY: misc_feature                                  |      |
| <223> OTHER INFORMATION: Primer BP40pro-HindIII-F                               |      |
| <400> SEQUENCE: 16                                                              |      |
| aagettgtga tegacatete tetee                                                     | 25   |
| -110. CEO ID NO 17                                                              |      |
| <210> SEQ ID NO 17<br><211> LENGTH: 21                                          |      |
| <211> LENGIH: 21<br><212> TYPE: DNA                                             |      |
| <212> TIPE: DNA<br><213> ORGANISM: Artificial                                   |      |
| <220> FEATURE:                                                                  |      |
| <223> OTHER INFORMATION: Primer BP40pro-NheI-R                                  |      |
| <220> FEATURE:                                                                  |      |
| <221> NAME/KEY: misc_feature                                                    |      |
| <223> OTHER INFORMATION: Primer BP40pro-NheI-R                                  |      |
| <400> SEQUENCE: 17                                                              |      |
| cgaggctagc taaacactta t                                                         | 21   |
| <210> SEQ ID NO 18                                                              |      |
| <211> LENGTH: 20                                                                |      |
| <212> TYPE: DNA                                                                 |      |
| <213> ORGANISM: Artificial                                                      |      |
| <220> FEATURE:                                                                  |      |
| <223> OTHER INFORMATION: Primer BP40pro-NheI-F                                  |      |
| <220> FEATURE:                                                                  |      |
| <221> NAME/KEY: misc_feature<br><223> OTHER INFORMATION: BPpro-NheI-F           |      |
| <400> SEQUENCE: 18                                                              |      |
| tttagctagc ctcgaagttg                                                           | 20   |
|                                                                                 |      |
| <210> SEQ ID NO 19<br><211> LENGTH: 27                                          |      |
| <212> TYPE: DNA                                                                 |      |
| <213> ORGANISM: Artificial                                                      |      |
| <220> FEATURE:                                                                  |      |
| <223> OTHER INFORMATION: Primer BP40pro-BamHI-R                                 |      |
| <220> FEATURE:                                                                  |      |
| <221> NAME/KEY: misc_feature<br><223> OTHER INFORMATION: Primer BP40pro-BamHI-R |      |
| <400> SEQUENCE: 19                                                              |      |
| ggatccctat gttgagaaaa agggact                                                   | 27   |
| gyatteetat yttyayaaaa ayyyatt                                                   | 27   |
| <210> SEQ ID NO 20                                                              |      |
| <211> LENGTH: 24                                                                |      |
| <212> TYPE: DNA                                                                 |      |
| <213> ORGANISM: Artificial                                                      |      |
| <220> FEATURE:<br><223> OTHER INFORMATION: DFRproHindIIIF                       |      |
| <400> SEQUENCE: 20                                                              |      |
| taataagett acagtgtaat tate                                                      | 24   |
|                                                                                 |      |
|                                                                                 |      |

| -continued |  |
|------------|--|

60

| - C                                                                           | continued |
|-------------------------------------------------------------------------------|-----------|
| <211> LENGTH: 23                                                              |           |
| <212> TYPE: DNA                                                               |           |
| <213> ORGANISM: Artificial                                                    |           |
| <220> FEATURE:                                                                |           |
| <223> OTHER INFORMATION: DFRproNheIR                                          |           |
| <400> SEQUENCE: 21                                                            |           |
| ttatgctagc gtgtcaagac cac                                                     | 23        |
|                                                                               |           |
| <210> SEQ ID NO 22                                                            |           |
| :211> LENGTH: 22                                                              |           |
| 212> TYPE: DNA                                                                |           |
| 213> ORGANISM: Artificial                                                     |           |
| 220> FEATURE:                                                                 |           |
| 223> OTHER INFORMATION: DFRproNheIF                                           |           |
| 400> SEQUENCE: 22                                                             |           |
| acacgctagc ataagtctgt tg                                                      | 22        |
| <210> SEQ ID NO 23                                                            |           |
| <211> LENGTH: 20                                                              |           |
| <212> TYPE: DNA                                                               |           |
| <213> ORGANISM: Artificial                                                    |           |
| 220> FEATURE:                                                                 |           |
| 223> OTHER INFORMATION: DFRproBamHI-R                                         |           |
| <400> SEQUENCE: 23                                                            |           |
| gcttggggat ccatcttagg                                                         | 20        |
| <210> SEQ ID NO 24                                                            |           |
| <211> LENGTH: 25                                                              |           |
| 212> TYPE: DNA                                                                |           |
| <213> ORGANISM: Artificial                                                    |           |
| 220> FEATURE:                                                                 |           |
| <223> OTHER INFORMATION: Primer RrF3H-F                                       |           |
| 400> SEQUENCE: 24                                                             |           |
| aagettetag ttagacaaaa ageta                                                   | 25        |
| <210> SEQ ID NO 25                                                            |           |
| <211> LENGTH: 25                                                              |           |
| <212> TYPE: DNA                                                               |           |
| <213> ORGANISM: Artificial                                                    |           |
| <220> FEATURE:<br><223> OTHER INFORMATION: Primer RrF3H-R                     |           |
|                                                                               |           |
| <400> SEQUENCE: 25                                                            |           |
| ggateetete ttgatattte egtte                                                   | 25        |
| <210> SEQ ID NO 26                                                            |           |
| <211> LENGTH: 33                                                              |           |
| <212> TYPE: DNA                                                               |           |
| <213> ORGANISM: Artificial                                                    |           |
| <pre>&lt;220&gt; FEATURE:<br/>&lt;223&gt; OTHER INFORMATION: ADH-BP40Fd</pre> |           |
|                                                                               |           |
| <400> SEQUENCE: 26                                                            |           |
| caagaaaaat aaatggcaat tctagtcacc gac                                          | 33        |
| <210> SEQ ID NO 27                                                            |           |
| <211> LENGTH: 20                                                              |           |
| <212> TYPE: DNA                                                               |           |
| <213> ORGANISM: Artificial                                                    |           |
| <220> FEATURE:                                                                |           |
| <223> OTHER INFORMATION: Ncol-BP40-Rv                                         |           |
| <400> SEQUENCE: 27                                                            |           |

<400> SEQUENCE: 27

61

-continued

|                                                             | -continued |  |
|-------------------------------------------------------------|------------|--|
| ctcgagcgta cgtgagcatc                                       | 20         |  |
|                                                             |            |  |
| <210> SEQ ID NO 28                                          |            |  |
| <211> LENGTH: 29                                            |            |  |
| <212> TYPE: DNA                                             |            |  |
| <213> ORGANISM: Artificial<br><220> FEATURE:                |            |  |
| <223> OTHER INFORMATION: BamHI-ADH-Fd                       |            |  |
|                                                             |            |  |
| <400> SEQUENCE: 28                                          |            |  |
| cgcggatccg tctatttaac tcagtattc                             | 29         |  |
| <210> SEQ ID NO 29                                          |            |  |
| <211> LENGTH: 35                                            |            |  |
| <212> TYPE: DNA                                             |            |  |
| <213> ORGANISM: Artificial                                  |            |  |
| <220> FEATURE:<br><223> OTHER INFORMATION: BP40-ADH-Rv      |            |  |
| <400> SEQUENCE: 29                                          |            |  |
| tagaattgcc atttatttt cttgatttcc ttcac                       | 35         |  |
|                                                             |            |  |
| <210> SEQ ID NO 30                                          |            |  |
| <211> LENGTH: 29                                            |            |  |
| <212> TYPE: DNA                                             |            |  |
| <213> ORGANISM: Artificial                                  |            |  |
| <220> FEATURE:                                              |            |  |
| <223> OTHER INFORMATION: BamHI-ADH-Fd                       |            |  |
| <400> SEQUENCE: 30                                          |            |  |
| cgcggatccg tctatttaac tcagtattc                             | 29         |  |
| <210> SEQ ID NO 31                                          |            |  |
| <211> LENGTH: 20                                            |            |  |
| <212> TYPE: DNA                                             |            |  |
| <213> ORGANISM: Artificial                                  |            |  |
| <220> FEATURE:<br><223> OTHER INFORMATION: Ncol-BP40Rv      |            |  |
|                                                             |            |  |
| <400> SEQUENCE: 31                                          |            |  |
| ctcgagcgta cgtgagcatc                                       | 20         |  |
| <210> SEQ ID NO 32                                          |            |  |
| <211> LENGTH: 27                                            |            |  |
| <212> TYPE: DNA                                             |            |  |
| <213> ORGANISM: Artificial<br><220> FEATURE:                |            |  |
| <220> FEATORE:<br><223> OTHER INFORMATION: ADH KpnI Forward |            |  |
| <400> SEQUENCE: 32                                          |            |  |
| cggtaccgtc tatttaactc agtattc                               | 27         |  |
|                                                             |            |  |
| <210> SEQ ID NO 33                                          |            |  |
| <211> LENGTH: 25<br><212> TYPE: DNA                         |            |  |
| <212> TYPE: DNA<br><213> ORGANISM: Artificial               |            |  |
| <2213> ORGANISM: ATTILICIAL<br><220> FEATURE:               |            |  |
| <2205 FEATURE:<br><2235 OTHER INFORMATION: GUS19R           |            |  |
| <400> SEQUENCE: 33                                          |            |  |
| tttctacagg acgtaacata aggga                                 | 25         |  |
|                                                             |            |  |
| <210> SEQ ID NO 34                                          |            |  |
| <211> LENGTH: 1047                                          |            |  |
| <212> TYPE: DNA                                             |            |  |

<212> TYPE: DNA

| <pre></pre>                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre>&lt;222&gt; LOCATION: (1)(23) &lt;220&gt; FEATURE: &lt;221&gt; NAME/KEY: primer_bind &lt;222&gt; LOCATION: (1023)(1047)</pre>                                                                                                                                                 |
| <222> LOCATION: (1023)(1047)<br><400> SEQUENCE: 34                                                                                                                                                                                                                                 |
| ~<br>ttacaaaacc atgtgcaaga atgaagaaag aagaaacaat gagggtctaa tatgtaatag 60                                                                                                                                                                                                          |
| ttagettage ttttetagta agetaaattt agggttttta tgtaacetee etetettata 120                                                                                                                                                                                                              |
| taaagagggt aggcgtctag ggtttcggta ttcctttcca ttatcctttt cattcatcct 180                                                                                                                                                                                                              |
| ttcatttcat agtattcatc tctaatgaga gtctagacac acgatcatag cgtgtgtata 240                                                                                                                                                                                                              |
| atagttgtag tagttttttt gttttaatta ataaagaaaa ccttattatt agtgatgttg 300                                                                                                                                                                                                              |
| attgtgtttt taatcattcc gctgttttca atcaattgat atcactcata ccctagttga 360                                                                                                                                                                                                              |
| gtcccgatct tgttttcaac aattggtttc agagcctcgt ggctctcgat ctagggttta 420                                                                                                                                                                                                              |
| taagattttc atgtaattag ggtttatact ctaattcatc tattgcagca gatttgaaaa 480                                                                                                                                                                                                              |
| gaaaagaggc agcagatggg gaattgatca catggctact gttcgaacct acaaaggaat 540                                                                                                                                                                                                              |
| atcaatacga gggctcaatt attgtctcgg attcaatgaa ttcacaaggt aaataaacgc 600                                                                                                                                                                                                              |
| ggtactettt teattggtee ttegtttat ttgtttgaea attaattggg atggetggeg 660                                                                                                                                                                                                               |
| tgtataattc tcaatacatg tctgatttaa tatgtgattg gttgacattc atgtgaaatt 720                                                                                                                                                                                                              |
| aatatactca ttttatgatt acaaagaccc acgatgtata attaattcca atcttgtgga 780                                                                                                                                                                                                              |
| atgggatcca ttgtgaaccg gtgcatgatt gttacggtgg ggattacttt tgattggttc 840                                                                                                                                                                                                              |
| agcattatca tataaccccc gttcaacgga tgcatgctac attggtacgt atacatatac 900                                                                                                                                                                                                              |
| gattcacgtg tggtagttga taactagcgc gatacgcccc caccccatat ttcttcaatt 960                                                                                                                                                                                                              |
| ttetetacaa ataeeeatge caacettaeg aaacaeteat teeeettae teatagaege 1020                                                                                                                                                                                                              |
| accaagtgtg tgaagaaaaa ataaaaa 1047                                                                                                                                                                                                                                                 |
| <pre>&lt;210&gt; SEQ ID NO 35<br/>&lt;211&gt; LENGTH: 2346<br/>&lt;212&gt; TYPE: DNA<br/>&lt;213&gt; ORGANISM: Chrysanthemum<br/>&lt;220&gt; FEATURE:<br/>&lt;221&gt; NAME/KEY: misc_feature<br/>&lt;223&gt; OTHER INFORMATION: pBluescript SK-F3H9 which contains Flavanone</pre> |
|                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                    |
| tttetttat tteaetttt gtttggtttt gtgttttaa eattttgeag gaattggaga 180                                                                                                                                                                                                                 |
| agaattcaca agtgactaaa acggggacct gttctgtcca acagttacgg cgtaactcat 240                                                                                                                                                                                                              |
| cctcatggtt acgccgtaac atatecteag tagcgattet etecaataca taaaceatta 300                                                                                                                                                                                                              |
| cggcgtaatc ccattctatg gttacgccgt agctattctc cagtagcaaa ttgccagttt 360                                                                                                                                                                                                              |

65

## -continued

| 11 | 1 |
|----|---|
| υu |   |

|             |                                 |            |            | -contir    | lued       |      |  |
|-------------|---------------------------------|------------|------------|------------|------------|------|--|
| ttaccacaat  | tacagcttaa                      | ctcctcttc  | gggttacgtc | gtaactatcc | tacaattcta | 420  |  |
| atttttccta  | tattaacaca                      | ataaccttgt | attagtttt  | aaatgaactt | tgcgggtatg | 480  |  |
| ttccatgtaa  | gccctcatga                      | gactacactc | gtccacttgg | gacaccaagt | ggtttaaaat | 540  |  |
| gcttgttgca  | tatgctaaat                      | gcaaccgtga | ttcctacgaa | agtgagttag | atttctttt  | 600  |  |
| gtttttgttt  | ttatttttct                      | ttttagaatt | atgcttgttg | gttagtgtga | tatcagggaa | 660  |  |
| tgaagtttgc  | tcgtggatgc                      | ttaagcaaag | gcacgattct | cttcgtaggc | cttctttctt | 720  |  |
| tttaagagca  | aatttcaggg                      | aagttctcgc | tctaattcta | ctttctcttc | acctttattt | 780  |  |
| aacgtttagt  | acaaaaggga                      | ctttgtacat | cttaagtggg | ggggacggga | gtagaattat | 840  |  |
| tacttgaact  | taattgccct                      | cgtttttcta | gtttatttg  | aaaaattatg | ccatttttaa | 900  |  |
| aattttggca  | tgtttttctt                      | aagctaacta | gattagacct | tagccgagca | ctttataacc | 960  |  |
| cttgatattt  | tatggtgaga                      | ttagctttat | ccgtttctaa | ttatttaccc | aaatccacta | 1020 |  |
| aattattaga  | gtgtcggtag                      | cttgtaaact | ttagaacttg | gtctttgtgt | tgggaattgt | 1080 |  |
| cgagttgaag  | attacaaaac                      | catgtgcaag | aatgaagaaa | gaagaaacaa | tgagggtcta | 1140 |  |
| atatgtaata  | gttagcttag                      | cttttctagt | aagctaaatt | tagggttttt | atgtaacctc | 1200 |  |
| cctctcttat  | ataaagaggg                      | taggcgtcta | gggtttcggt | attcctttcc | attatccttt | 1260 |  |
| tcattcatcc  | tttcatttca                      | tagtattcat | ctctaatgag | agtctagaca | cacgatcata | 1320 |  |
| gcgtgtgtat  | aatagttgta                      | gtagttttt  | tgttttaatt | aataaagaaa | accttattat | 1380 |  |
| tagtgatgtt  | gattgtgttt                      | ttaatcattc | cgctgttttc | aatcaattga | tatcactcat | 1440 |  |
| accctagttg  | agtcccgatc                      | ttgttttcaa | caattggttt | cagagceteg | tggctctcga | 1500 |  |
| tctagggttt  | ataagatttt                      | catgtaatta | gggtttatac | tctaattcat | ctattgcagc | 1560 |  |
| agatttgaaa  | agaaaagagg                      | cagcagatgg | ggaattgatc | acatggctac | tgttcgaacc | 1620 |  |
| tacaaaggaa  | tatcaatacg                      | agggctcaat | tattgtctcg | gattcaatga | attcacaagg | 1680 |  |
| taaataaacg  | cggtactctt                      | ttcattggtc | cttcgtttta | tttgtttgac | aattaattgg | 1740 |  |
| gatggctggc  | gtgtataatt                      | ctcaatacat | gtctgattta | atatgtgatt | ggttgacatt | 1800 |  |
| catgtgaaat  | taatatactc                      | attttatgat | tacaaagacc | cacgatgtat | aattaattcc | 1860 |  |
| aatcttgtgg  | aatgggatcc                      | attgtgaacc | ggtgcatgat | tgttacggtg | gggattactt | 1920 |  |
| ttgattggtt  | cagcattatc                      | atataacccc | cgttcaacgg | atgcatgcta | cattggtacg | 1980 |  |
| tatacatata  | cgattcacgt                      | gtggtagttg | ataactagcg | cgatacgccc | ccaccccata | 2040 |  |
| tttcttcaat  | tttctctaca                      | aatacccatg | ccaaccttac | gaaacactca | ttcccctcta | 2100 |  |
| ctcatagacg  | caccaagtgt                      | gtgaagaaaa | aataaaaaat | ggcacctata | tccttgaaat | 2160 |  |
| gggacgataa  | ttcgctgcat                      | gaaaaccggt | tcgtccgtga | tgaggacgag | cggcctaagg | 2220 |  |
| tgccatacaa  | caagtttacc                      | aacgagattc | ccgttatctc | acttaaggga | attgacgatg | 2280 |  |
| tggaagagag  | tagcggtggt                      | atcaaatcac | gtagggccga | gatttgtgag | aagataataa | 2340 |  |
| aagctt      |                                 |            |            |            |            | 2346 |  |
| <220> FEATU | TH: 55<br>: DNA<br>NISM: Artif: |            | Hpro1k-Fd  |            |            |      |  |

<400> SEQUENCE: 36

67

| <210> SEQ ID NO 37<br><211> LENGTH: 43                   |    |  |
|----------------------------------------------------------|----|--|
| <212> TYPE: DNA                                          |    |  |
| <213> ORGANISM: Artificial                               |    |  |
| <220> FEATURE:                                           |    |  |
| <223> OTHER INFORMATION: SNM-F3Hpro-Rv                   |    |  |
|                                                          |    |  |
| <400> SEQUENCE: 37                                       |    |  |
|                                                          | 43 |  |
| actagtgcta gcacgcgttt tttatttttt cttcacacac ttg          |    |  |
|                                                          |    |  |
| <210> SEQ ID NO 38                                       |    |  |
| <211> LENGTH: 43                                         |    |  |
| <212> TYPE: DNA                                          |    |  |
| <213> ORGANISM: Artificial                               |    |  |
| <220> FEATURE:<br><223> OTHER INFORMATION: NSM-F3Hpro-Rv |    |  |
| (225) OTHER INFORMATION. NON FORPIO RV                   |    |  |
| <400> SEQUENCE: 38                                       |    |  |
|                                                          |    |  |
| gctagcacta gtacgcgttt tttatttttt cttcacacac ttg          | 43 |  |
|                                                          |    |  |
| 210. (EQ TE NO 20                                        |    |  |
| <210> SEQ ID NO 39<br><211> LENGTH: 34                   |    |  |
| <211> HENGIN: 34<br><212> TYPE: DNA                      |    |  |
| <213> ORGANISM: Artificial                               |    |  |
| <220> FEATURE:                                           |    |  |
| <223> OTHER INFORMATION: BclI-CmF3Hp-Rv                  |    |  |
|                                                          |    |  |
| <400> SEQUENCE: 39                                       |    |  |
| ttttgatcat tttttatttt ttcttcacac agtg                    | 34 |  |
| eccegacoae eccecación ageg                               |    |  |
|                                                          |    |  |
| <210> SEQ ID NO 40                                       |    |  |
| <211> LENGTH: 33                                         |    |  |
| <212> TYPE: DNA                                          |    |  |
| <213> ORGANISM: Artificial<br><220> FEATURE:             |    |  |
| <223> OTHER INFORMATION: ADH-EgF3'5'H-Fd                 |    |  |
| (LLC) OTHER INFORMATION, THE LIGHT CAN BE                |    |  |
| <400> SEQUENCE: 40                                       |    |  |
|                                                          |    |  |
| caagaaaaat aaatggctgt tggaaatggc gtt                     | 33 |  |
|                                                          |    |  |
| <210> SEQ ID NO 41                                       |    |  |
| <211> LENGTH: 21                                         |    |  |
| <212> TYPE: DNA                                          |    |  |
| <213> ORGANISM: Artificial                               |    |  |
| <220> FEATURE:                                           |    |  |
| <223> OTHER INFORMATION: HpaI-EgF3'5'H-Rv                |    |  |
| <400> SEQUENCE: 41                                       |    |  |
| C4009 SEQUENCE: 41                                       |    |  |
| gttaacgctg agcctagtgc c                                  | 21 |  |
|                                                          |    |  |
|                                                          |    |  |
| <210> SEQ ID NO 42                                       |    |  |
| <211> LENGTH: 32                                         |    |  |
| <212> TYPE: DNA                                          |    |  |
| <213> ORGANISM: Artificial<br><220> FEATURE:             |    |  |
| <223> OTHER INFORMATION: Xbal-ADH-Fd                     |    |  |
|                                                          |    |  |
| <400> SEQUENCE: 42                                       |    |  |
| ~                                                        |    |  |
| acgcgttcta gagtctattt aactcagtat tc                      | 32 |  |
| <b>-</b>                                                 |    |  |
|                                                          |    |  |
| <210> SEQ ID NO 43                                       |    |  |
| <211> LENGTH: 35                                         |    |  |
| <212> TYPE: DNA                                          |    |  |
| <213> ORGANISM: Artificial                               |    |  |
| <220> FEATURE:                                           |    |  |
|                                                          |    |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -continued |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| <pre>&lt;223&gt; OTHER INFORMATION: EgF3'5'H-ADH-Rv</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| <400> SEQUENCE: 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| tccaacagcc atttatttt cttgatttcc ttcac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35         |
| <210> SEQ ID NO 44<br><211> LENGTH: 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| <212> TYPE: DNA<br><213> ORGANISM: Artificial<br><220> FEATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| <223> OTHER INFORMATION: Hpal-EgF3'5'H-Rv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| <400> SEQUENCE: 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| gttaacgctg agcctagtgc c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21         |
| <210> SEQ ID NO 45<br><211> LENGTH: 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| <212> TYPE: DNA<br><213> ORGANISM: Artificial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| <220> FEATURE:<br><223> OTHER INFORMATION: ADH-LeF3'5'H-Fd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| <400> SEQUENCE: 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| caagaaaaat aaatggacgc gacawacatt gc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32         |
| <210> SEQ ID NO 46<br><211> LENGTH: 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| <pre></pre> |            |
| <220> FEATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| <223> OTHER INFORMATION: Hpal-LeF3'5'H-Rv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| <400> SEQUENCE: 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21         |
| gttaacatct cgggcagcac c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21         |
| <210> SEQ ID NO 47<br><211> LENGTH: 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| <212> TYPE: DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| <213> ORGANISM: Artificial<br><220> FEATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| <223> OTHER INFORMATION: LeF3'5'H-ADH-Rv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| <400> SEQUENCE: 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| tgtcgcgtcc atttatttt cttgatttcc ttcac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35         |
| <210> SEQ ID NO 48<br><211> LENGTH: 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| <212> TYPE: DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| <213> ORGANISM: Artificial<br><220> FEATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| <223> OTHER INFORMATION: Hpal-LeF3'5'H-Rv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| <400> SEQUENCE: 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| gttaacatct cgggcagcac c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21         |
| <210> SEQ ID NO 49<br><211> LENGTH: 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| <212> TYPE: DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| <213> ORGANISM: Artificial<br><220> FEATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| <223> OTHER INFORMATION: CamF1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| <400> SEQUENCE: 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| gtgaagccac catgtctata g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |

|                                                                         |                                                                                            | -0                                                      | oncinued |  |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------|----------|--|
| <210> SEQ I<br><211> LENGT<br><212> TYPE:<br><213> ORGAN                | H: 22                                                                                      |                                                         |          |  |
| <220> FEATU<br><223> OTHER                                              | RE:<br>INFORMATION: Car                                                                    | nR1                                                     |          |  |
| <400> SEQUE                                                             | NCE: 50                                                                                    |                                                         |          |  |
| gcatttgcct                                                              | agacagtgta ag                                                                              |                                                         | 22       |  |
| <220> FEATU<br><221> NAME/<br><223> OTHER<br><220> FEATU<br><221> NAME/ | H: 1585<br>DNA<br>ISM: Campanula me<br>RE:<br>KEY: misc_feature<br>INFORMATION: Cl:<br>RE: | ne #4 pSPB2561                                          |          |  |
| <400> SEQUE                                                             |                                                                                            |                                                         |          |  |
| ycgaagccac                                                              |                                                                                            | z ata acc att ctc tta<br>> Ile Thr Ile Leu Leu<br>5     |          |  |
|                                                                         |                                                                                            | tta acc tac tat ttc a<br>Leu Thr Tyr Tyr Phe I<br>25    | •        |  |
|                                                                         |                                                                                            | cac cac ctc cct ccc c<br>His His Leu Pro Pro G<br>40    |          |  |
|                                                                         |                                                                                            | cct ctc tta ggc act a<br>Pro Leu Leu Gly Thr M<br>55    |          |  |
| -                                                                       |                                                                                            | aaa tac ggg cct ata a<br>Lys Tyr Gly Pro Ile M<br>70    | -        |  |
|                                                                         |                                                                                            | gtg gcc tca aat cca a<br>Val Ala Ser Asn Pro I<br>85 S  |          |  |
|                                                                         | -                                                                                          | gcc aat ttt tct aac c<br>Ala Asn Phe Ser Asn A<br>105   |          |  |
|                                                                         |                                                                                            | tat aat gca caa gac a<br>Tyr Asn Ala Gln Asp M<br>120   |          |  |
| 0 00                                                                    | 00 0                                                                                       | ctt ttg cga aag cta t<br>Leu Leu Arg Lys Leu C<br>135   |          |  |
|                                                                         |                                                                                            | gag gat tgg gct cat g<br>Glu Asp Trp Ala His V<br>150   |          |  |
|                                                                         | His Met Leu Lys                                                                            | gaa atg tac gag caa t<br>Glu Met Tyr Glu Gln S<br>165 1 |          |  |
|                                                                         |                                                                                            | atg tta act tat gcc a<br>Met Leu Thr Tyr Ala M<br>185   |          |  |
|                                                                         | -                                                                                          | cga cgc cct ttt gtt a<br>Arg Arg Pro Phe Val I<br>200   |          |  |
|                                                                         |                                                                                            | gct tct gtt agt gaa t<br>Ala Ser Val Ser Glu F          |          |  |

#### -continued

|          |     |                   |          | 210      |     |     |          |          | 215 |          |     |     |          | 220 |     |      |  |
|----------|-----|-------------------|----------|----------|-----|-----|----------|----------|-----|----------|-----|-----|----------|-----|-----|------|--|
| <u> </u> |     | gag<br>Glu        |          | <u> </u> |     |     | •        | 000      |     |          |     |     |          | •   |     | 722  |  |
|          |     | tat<br>Tyr<br>240 |          |          |     | -   | -        | -        |     |          |     |     | -        | -   | -   | 770  |  |
| -        | -   | ata<br>Ile        | -        |          | -   |     | -        | -        | -   | -        |     |     | -        |     | -   | 818  |  |
| <u> </u> |     | aca<br>Thr        | <u> </u> |          | -   |     | <u> </u> | <u> </u> |     | <u> </u> |     |     | <u> </u> |     |     | 866  |  |
| -        |     | ctt<br>Leu        | -        |          | -   |     |          | -        |     | -        |     |     |          | -   |     | 914  |  |
|          |     | gta<br>Val        |          |          |     |     |          |          |     |          |     |     |          |     |     | 962  |  |
| acg      | gat | aca               | tcg      | tcg      | agt | gtg | atc      | gaa      | tgg | gca      | cta | gcc | gaa      | atg | ttg | 1010 |  |

| - | gat<br>Asp        |   | - | <u> </u> | <u> </u> |   | <u> </u> |   | <u> </u> |   | <u> </u> | <u> </u> | -        | 0 | 1010 |
|---|-------------------|---|---|----------|----------|---|----------|---|----------|---|----------|----------|----------|---|------|
|   | aat<br>Asn<br>335 |   |   |          |          |   |          |   |          |   |          |          |          |   | 1058 |
|   | ggc<br>Gly        | - |   | -        | -        | - |          |   | -        |   |          |          | -        |   | 1106 |
|   | ttc<br>Phe        |   |   |          |          |   |          |   |          |   |          |          |          |   | 1154 |
|   | tta               |   |   |          | <u> </u> |   |          | - | -        | - | -        | <u> </u> | <u> </u> |   | 1202 |

Pro Leu Asn Leu Pro Arg Ile Ser Thr Glu Glu Cys Glu Val Glu Gly ttt cgc ata ccc aaa aac act aga cta ata gtg aac ata tgg gca ata Phe Arg Ile Pro Lys Asn Thr Arg Leu Ile Val Asn Ile Trp Ala Ile 

ggg aga gac cct aaa gtg tgg gaa aat cca ttg gat ttt acc ccg gaa Gly Arg Asp Pro Lys Val Trp Glu Asn Pro Leu Asp Phe Thr Pro Glu 

cga ttc ttg agt gaa aaa cac gcg aaa att gat ccg cga ggt aat cat Arg Phe Leu Ser Glu Lys His Ala Lys Ile Asp Pro Arg Gly Asn His 

ttt gag tta atc cca ttt ggg gcg gga cgg agg ata tgt gca ggg gct Phe Glu Leu Ile Pro Phe Gly Ala Gly Arg Arg Ile Cys Ala Gly Ala 

aga atg gga gcg gcc tcg gtc gag tac att tta ggt aca ttg gtg cac Arg Met Gly Ala Ala Ser Val Glu Tyr Ile Leu Gly Thr Leu Val His tca ttt gat tgg aaa ttg cct gat gga gtt gtg gaa gtt aat atg gaa Ser Phe Asp Trp Lys Leu Pro Asp Gly Val Val Glu Val Asn Met Glu 

gag agc ttt ggg ata gca ttg cag aaa aag atg cct ctt tct gct att Glu Ser Phe Gly Ile Ala Leu Gln Lys Lys Met Pro Leu Ser Ala Ile 

gtt act cca aga ttg cct cca agt gct tac act gtc tag gcaaatgc Val Thr Pro Arg Leu Pro Pro Ser Ala Tyr Thr Val 

|            | )> SH<br>L> LH |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
|------------|----------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|            | 2> T<br>3> OF  |            |            | Cam        | panu       | la me      | ediur      | n          |            |            |            |            |            |            |            |
| <400       | )> SI          | EQUEI      | ICE :      | 52         |            |            |            |            |            |            |            |            |            |            |            |
| Met<br>1   | Ser            | Ile        | Asp        | Ile<br>5   | Thr        | Ile        | Leu        | Leu        | Cys<br>10  | Glu        | Leu        | Val        | Ala        | Ala<br>15  | Ile        |
| Ser        | Leu            | Tyr        | Leu<br>20  | Leu        | Thr        | Tyr        | Tyr        | Phe<br>25  | Ile        | Суз        | Phe        | Leu        | Phe<br>30  | Lys        | Pro        |
| Ser        | His            | His<br>35  | His        | His        | His        | Leu        | Pro<br>40  | Pro        | Gly        | Pro        | Thr        | Gly<br>45  | Trp        | Pro        | Ile        |
| Ile        | Gly<br>50      | Ser        | Leu        | Pro        | Leu        | Leu<br>55  | Gly        | Thr        | Met        | Pro        | His<br>60  | Val        | Ser        | Leu        | Ala        |
| Asp<br>65  | Met            | Ala        | Val        | Lys        | Tyr<br>70  | Gly        | Pro        | Ile        | Met        | Tyr<br>75  | Leu        | Lys        | Leu        | Gly        | Ser<br>80  |
| ГЛа        | Gly            | Thr        | Val        | Val<br>85  | Ala        | Ser        | Asn        | Pro        | Lys<br>90  | Ala        | Ala        | Arg        | Ala        | Phe<br>95  | Leu        |
| ГЛа        | Ser            | His        | Asp<br>100 | Ala        | Asn        | Phe        | Ser        | Asn<br>105 | Arg        | Pro        | Ile        | Asp        | Gly<br>110 | Gly        | Pro        |
| Thr        | Tyr            | Leu<br>115 | Ala        | Tyr        | Asn        | Ala        | Gln<br>120 | Asp        | Met        | Val        | Phe        | Ala<br>125 | Glu        | Tyr        | Gly        |
| Pro        | Lys<br>130     | Trp        | Lys        | Leu        | Leu        | Arg<br>135 | Lys        | Leu        | Cys        | Ser        | Leu<br>140 | His        | Met        | Leu        | Gly        |
| Pro<br>145 | Lys            | Ala        | Leu        | Glu        | Asp<br>150 | Trp        | Ala        | His        | Val        | Arg<br>155 | Val        | Ser        | Glu        | Val        | Gly<br>160 |
| His        | Met            | Leu        | ГЛЗ        | Glu<br>165 | Met        | Tyr        | Glu        | Gln        | Ser<br>170 | Ser        | Lys        | Ser        | Val        | Pro<br>175 | Val        |
| Val        | Val            | Pro        | Glu<br>180 | Met        | Leu        | Thr        | Tyr        | Ala<br>185 | Met        | Ala        | Asn        | Met        | Ile<br>190 | Gly        | Arg        |
| Ile        | Ile            | Leu<br>195 | Ser        | Arg        | Arg        | Pro        | Phe<br>200 | Val        | Ile        | Thr        | Ser        | Lys<br>205 | Leu        | Asp        | Ser        |
| Ser        | Ala<br>210     | Ser        | Ala        | Ala        | Ser        | Val<br>215 | Ser        | Glu        | Phe        | Gln        | Tyr<br>220 | Met        | Val        | Met        | Glu        |
| Leu<br>225 | Met            | Arg        | Met        | Ala        | Gly<br>230 | Leu        | Phe        | Asn        | Ile        | Gly<br>235 | Asp        | Phe        | Ile        | Pro        | Tyr<br>240 |
| Ile        | Ala            | Trp        | Met        | Asp<br>245 | Leu        | Gln        | Gly        | Ile        | Gln<br>250 | Arg        | Asp        | Met        | Lys        | Val<br>255 | Ile        |
| Gln        | Gln            | Lys        | Phe<br>260 | Asp        | Val        | Leu        | Leu        | Asn<br>265 | Lys        | Met        | Ile        | Lys        | Glu<br>270 | His        | Thr        |
| Glu        | Ser            | Ala<br>275 | His        | Asp        | Arg        | Lys        | Asp<br>280 | Asn        | Pro        | Asp        | Phe        | Leu<br>285 | Asp        | Ile        | Leu        |
| Met        | Ala<br>290     | Ala        | Thr        | Gln        | Glu        | Asn<br>295 | Thr        | Glu        | Gly        | Ile        | Gln<br>300 | Leu        | Asn        | Leu        | Val        |
| Asn<br>305 | Val            | Lys        | Ala        | Leu        | Leu<br>310 | Leu        | Asp        | Leu        | Phe        | Thr<br>315 | Ala        | Gly        | Thr        | Aab        | Thr<br>320 |
| Ser        | Ser            | Ser        | Val        | Ile<br>325 | Glu        | Trp        | Ala        | Leu        | Ala<br>330 | Glu        | Met        | Leu        | Asn        | Asn<br>335 | Arg        |
| Gln        | Ile            | Leu        | Asn<br>340 | Arg        | Ala        | His        | Glu        | Glu<br>345 | Met        | Asp        | Gln        | Val        | Ile<br>350 | Gly        | Arg        |
| Asn        | Arg            | Arg<br>355 | Leu        | Glu        | Gln        | Ser        | Asp<br>360 | Ile        | Pro        | Asn        | Leu        | Pro<br>365 | Tyr        | Phe        | Gln        |
| Ala        | Ile<br>370     | Сув        | Lys        | Glu        | Thr        | Phe<br>375 | Arg        | Lys        | His        | Pro        | Ser<br>380 | Thr        | Pro        | Leu        | Asn        |

| Leu<br>385                           | Pro                                       | Arg            | Ile                                | Ser               | Thr<br>390 | Glu        | Glu        | Суз        | Glu        | Val<br>395 | Glu        | Gly | Phe        | Arg        | Ile<br>400 |   |   |  |  |
|--------------------------------------|-------------------------------------------|----------------|------------------------------------|-------------------|------------|------------|------------|------------|------------|------------|------------|-----|------------|------------|------------|---|---|--|--|
| Pro                                  | Lys                                       | Asn            | Thr                                | Arg<br>405        | Leu        | Ile        | Val        | Asn        | Ile<br>410 | Trp        | Ala        | Ile | Gly        | Arg<br>415 | Asp        |   |   |  |  |
| Pro                                  | Lys                                       | Val            | _                                  |                   | Asn        | Pro        | Leu        | -          |            | Thr        | Pro        | Glu | -          |            | Leu        |   |   |  |  |
| Ser                                  | Glu                                       | Lys            | 420<br>His                         | Ala               | Lys        | Ile        | Asp        | 425<br>Pro | Arq        | Glv        | Asn        | His | 430<br>Phe | Glu        | Leu        |   |   |  |  |
|                                      |                                           | 435            |                                    |                   |            |            | 440        |            |            |            |            | 445 |            |            |            |   |   |  |  |
| Ile                                  | Pro<br>450                                | Phe            | GIY                                | Ala               | GIY        | Arg<br>455 | Arg        | Ile        | Суз        | Ala        | GIY<br>460 | Ala | Arg        | Met        | GIY        |   |   |  |  |
| Ala<br>465                           | Ala                                       | Ser            | Val                                | Glu               | Tyr<br>470 | Ile        | Leu        | Gly        | Thr        | Leu<br>475 | Val        | His | Ser        | Phe        | Asp<br>480 |   |   |  |  |
| Trp                                  | Lys                                       | Leu            | Pro                                | Asp<br>485        | Gly        | Val        | Val        | Glu        | Val<br>490 | Asn        | Met        | Glu | Glu        | Ser<br>495 | Phe        |   |   |  |  |
| Gly                                  | Ile                                       | Ala            | Leu<br>500                         | Gln               | Lys        | Lys        | Met        | Pro<br>505 | Leu        | Ser        | Ala        | Ile | Val<br>510 | Thr        | Pro        |   |   |  |  |
| Arg                                  | Leu                                       | Pro<br>515     | Pro                                | Ser               | Ala        | Tyr        | Thr<br>520 | Val        |            |            |            |     |            |            |            |   |   |  |  |
| <212<br><213<br><220<br><223         | 2> T)<br>3> OF<br>0> FF<br>3> O)          | EATU           | DNA<br>ISM:<br>RE:<br>INF(         | Art:<br>ORMA      |            |            | H-Car      | npa-1      | Fd         |            |            |     |            |            |            |   |   |  |  |
|                                      |                                           |                |                                    |                   | at ag      | gaca       | taaco      | c ati      | tc         |            |            |     |            |            |            | 3 | 4 |  |  |
| <211<br><212<br><213<br><220         | L> LH<br>2> TY<br>3> OH<br>0> FH          | EATU           | H: 2:<br>DNA<br>ISM:<br>RE:        | 1<br>Art:         |            |            | al-Ca      | ampa       | -Rv        |            |            |     |            |            |            |   |   |  |  |
| <400                                 | )> SI                                     | EQUEI          | ICE :                              | 54                |            |            |            |            |            |            |            |     |            |            |            |   |   |  |  |
| gtta                                 | acat                                      | ct o           | ctgg                               | cacca             | ac c       |            |            |            |            |            |            |     |            |            |            | 2 | 1 |  |  |
| <211<br><212<br><213<br><220<br><223 | L> LH<br>2> TY<br>3> OH<br>0> FH<br>3> OT | EATU           | H: 3<br>DNA<br>ISM:<br>RE:<br>INFO | 5<br>Art:<br>DRMA |            |            | mpa-ł      | ADH-1      | Rv         |            |            |     |            |            |            |   |   |  |  |
| gtct                                 | atag                                      | gac a          | attta                              | attt              | tt ci      | ttga       | tttco      | tt.        | cac        |            |            |     |            |            |            | 3 | 5 |  |  |
| <211<br><212<br><213<br><220         | L> LH<br>2> TY<br>3> OH<br>0> FH          | EATUR          | H: 2:<br>DNA<br>ISM:<br>RE:        | 1<br>Art:         |            |            | aI-Ca      | ampa       | -Rv        |            |            |     |            |            |            |   |   |  |  |
|                                      |                                           | EQUEI          |                                    |                   |            |            |            |            |            |            |            |     |            |            |            |   |   |  |  |
| gtta                                 | acat                                      | cet d          | ctgg                               | cacca             | ac c       |            |            |            |            |            |            |     |            |            |            | 2 | 1 |  |  |
|                                      |                                           | EQ II<br>ENGTH |                                    |                   |            |            |            |            |            |            |            |     |            |            |            |   |   |  |  |

<sup>&</sup>lt;211> LENGTH: 33 <212> TYPE: DNA

-continued

|                                                             | -continued |
|-------------------------------------------------------------|------------|
| <213> ORGANISM: Artificial                                  |            |
| <220> FEATURE:<br><223> OTHER INFORMATION: ADH-ScF3'5'H-Fd  |            |
| <400> SEQUENCE: 57                                          |            |
|                                                             | 22         |
| caagaaaaat aaatgagcat tctaacccta atc                        | 33         |
| <210> SEQ ID NO 58                                          |            |
| <211> LENGTH: 24                                            |            |
| <212> TYPE: DNA                                             |            |
| <213> ORGANISM: Artificial                                  |            |
| <220> FEATURE:<br><223> OTHER INFORMATION: Ndel-ScF3'5'H-Rv |            |
| <400> SEQUENCE: 58                                          |            |
|                                                             | 24         |
| catatgttta gctccagaat ttgg                                  | 24         |
| <210> SEQ ID NO 59                                          |            |
| <211> LENGTH: 35                                            |            |
| <212> TYPE: DNA                                             |            |
| <213> ORGANISM: Artificial                                  |            |
| <220> FEATURE:                                              |            |
| <223> OTHER INFORMATION: ScF3'5'H-ADH-Rv                    |            |
| <400> SEQUENCE: 59                                          |            |
| tagaatgete atttattttt ettgatttee tteae                      | 35         |
| ALA CEA IN NA CA                                            |            |
| <210> SEQ ID NO 60<br><211> LENGTH: 24                      |            |
| <211> HENGIN: 24<br><212> TYPE: DNA                         |            |
| <213> ORGANISM: Artificial                                  |            |
| <220> FEATURE:                                              |            |
| <223> OTHER INFORMATION: Ndel-ScF3'5'H-Rv                   |            |
| <400> SEQUENCE: 60                                          |            |
| catatgttta gctccagaat ttgg                                  | 24         |
| <210> SEQ ID NO 61                                          |            |
| <211> LENGTH: 34                                            |            |
| <212> TYPE: DNA                                             |            |
| <213> ORGANISM: Artificial                                  |            |
| <220> FEATURE:                                              |            |
| <223> OTHER INFORMATION: ADH-Gentian-Fd                     |            |
| <400> SEQUENCE: 61                                          |            |
| caagaaaaat aaatgtcacc catttacacc accc                       | 34         |
| <210> SEQ ID NO 62                                          |            |
| <210> SEQ 1D NO 62<br><211> LENGTH: 20                      |            |
| <211> HENGIR: 20<br><212> TYPE: DNA                         |            |
| <212> IIFE. DNA<br><213> ORGANISM: Artificial               |            |
| <220> FEATURE:                                              |            |
| <223> OTHER INFORMATION: Sall-GentianF3'5'H-F               | ζv         |
| <400> SEQUENCE: 62                                          |            |
| gtcgacgcta ttgctaagcc                                       | 20         |
|                                                             |            |
| <210> SEQ ID NO 63                                          |            |
| <211> LENGTH: 35                                            |            |
| <212> TYPE: DNA                                             |            |
| <213> ORGANISM: Artificial                                  |            |
| <220> FEATURE:                                              |            |
| <223> OTHER INFORMATION: Gentian-ADH-Rv                     |            |
| <400> SEQUENCE: 63                                          |            |
| aatgggtgac atttatttt cttgatttcc ttcac                       | 35         |

aatgggtgac atttatttt cttgatttcc ttcac

| <210> SEQ ID NO 64                                                |     |
|-------------------------------------------------------------------|-----|
| <211> LENGTH: 20                                                  |     |
| <212> TYPE: DNA                                                   |     |
| <213> ORGANISM: Artificial                                        |     |
| <220> FEATURE:                                                    |     |
| <223> OTHER INFORMATION: Sall-GentianF3'5'H-Rv                    |     |
|                                                                   |     |
| <400> SEQUENCE: 64                                                |     |
| gtcgacgcta ttgctaagcc                                             | 20  |
| -210- SEO ID NO SE                                                |     |
| <210> SEQ ID NO 65<br><211> LENGTH: 36                            |     |
| <211> HENGIN: SO<br><212> TYPE: DNA                               |     |
| <213> ORGANISM: Artificial                                        |     |
| <220> FEATURE:                                                    |     |
| <223> OTHER INFORMATION: ADH-Verbena-Fd                           |     |
|                                                                   |     |
| <400> SEQUENCE: 65                                                |     |
| caagaaaaat aaatgacgtt ttcagagctt ataaac                           | 36  |
| <210> SEQ ID NO 66                                                |     |
| <2105 SEQ 15 NO 88<br><2115 LENGTH: 22                            |     |
| <211> HENGIN: 22<br><212> TYPE: DNA                               |     |
| <213> ORGANISM: Artificial                                        |     |
| <220> FEATURE:                                                    |     |
| <220> FLAIGRE:<br><223> OTHER INFORMATION: Ncol-Verbena-F3'5'H-Rv |     |
|                                                                   |     |
| <400> SEQUENCE: 66                                                |     |
| ccatggagta aatcagcatc tc                                          | 22  |
| <210> SEQ ID NO 67                                                |     |
| <211> LENGTH: 35                                                  |     |
| <212> TYPE: DNA                                                   |     |
| <213> ORGANISM: Artificial                                        |     |
| <220> FEATURE:                                                    |     |
| <223> OTHER INFORMATION: Verbena-ADH-Rv                           |     |
| <400> SEQUENCE: 67                                                |     |
|                                                                   | 35  |
| tgaaaacgtc atttatttt cttgatttcc ttcac                             | 35  |
| <210> SEQ ID NO 68                                                |     |
| <211> LENGTH: 22                                                  |     |
| <211> BENGIN: 22<br><212> TYPE: DNA                               |     |
| <213> ORGANISM: Artificial                                        |     |
| <220> FEATURE:                                                    |     |
| <223> OTHER INFORMATION: Ncol-VerbenaF3'5'H-Rv                    |     |
|                                                                   |     |
| <400> SEQUENCE: 68                                                |     |
| ccatggagta aatcagcatc tc                                          | 22  |
| <210> SEQ ID NO 69                                                |     |
| <211> LENGTH: 1755                                                |     |
| <211> HENGIN: 1755<br><212> TYPE: DNA                             |     |
| <213> ORGANISM: Antirrhinum kellogii                              |     |
| <220> FEATURE:                                                    |     |
| <220> FEATURE:<br><221> NAME/KEY: misc_feature                    |     |
|                                                                   |     |
| <223> OTHER INFORMATION: F3'5'HcDNA#1 pSPB3145                    |     |
| <220> FEATURE:                                                    |     |
| <221> NAME/KEY: CDS                                               |     |
| <222> LOCATION: (73)(1602)                                        |     |
| <400> SEQUENCE: 69                                                |     |
| ttoggcacga gggtacettt agtatgttea atetetagtt ttttattaat eacaaeteaa | 60  |
| tagataatcg tc atg cag ata ata att ccg gtc ctc ctg aag gag ctc acc | 111 |
| Met Gln Ile Ile Ile Pro Val Leu Leu Lys Glu Leu Thr               |     |

## -continued

|   |                   |   |   |   |   |   |   |   |   |   |   | COIL | τın | ueu |   |     |  |
|---|-------------------|---|---|---|---|---|---|---|---|---|---|------|-----|-----|---|-----|--|
|   |                   |   | 1 |   |   |   | 5 |   |   |   |   | 10   | C   |     |   |     |  |
| - | gca<br>Ala<br>15  | - |   |   |   | - |   |   |   |   |   |      | -   |     |   | 159 |  |
|   | aca<br>Thr        |   |   |   |   |   |   |   |   |   |   |      |     |     |   | 207 |  |
| - | gtc<br>Val        |   | - |   |   |   |   |   | - | - |   |      |     |     |   | 255 |  |
|   | aaa<br>Lys        |   |   |   |   |   |   |   |   |   |   |      |     |     |   | 303 |  |
|   | cac<br>His        |   |   |   |   |   |   |   |   |   |   |      |     |     |   | 351 |  |
|   | aaa<br>Lys<br>95  |   |   | - |   |   |   |   |   | - | - |      |     | -   |   | 399 |  |
| - | act<br>Thr        |   | - | - |   |   |   |   | - | - |   |      | -   | -   |   | 447 |  |
|   | ccg<br>Pro        |   |   |   |   |   |   |   |   |   |   |      |     |     |   | 495 |  |
|   | act<br>Thr        | - | - |   | - | - |   | - |   | - |   | -    | -   |     | - | 543 |  |
|   | tac<br>Tyr        |   |   |   |   |   |   |   |   |   |   |      |     |     |   | 591 |  |
|   | ggt<br>Gly<br>175 |   |   |   |   |   |   |   |   |   |   |      |     |     |   | 639 |  |
|   | gtg<br>Val        |   |   |   |   |   |   |   |   |   |   |      |     |     |   | 687 |  |
|   | gag<br>Glu        |   |   |   |   |   |   |   |   |   |   |      |     |     |   | 735 |  |
|   | aat<br>Asn        |   |   |   |   |   |   |   |   |   |   |      |     |     |   | 783 |  |
|   | ata<br>Ile        |   |   |   |   |   |   |   |   |   |   |      |     |     |   | 831 |  |
|   | agt<br>Ser<br>255 |   |   |   |   |   |   |   |   |   |   |      |     |     |   | 879 |  |
|   | aaa<br>Lys        |   | - |   |   | - | - |   | - | - |   | -    | -   |     | - | 927 |  |
|   | gga<br>Gly        |   |   |   |   |   |   |   |   |   |   |      |     |     |   | 975 |  |

 ttg ttc acc gcc ggt acg gat aca tct tcg agc aca ata gag tgg gcg
 1023

 Leu Phe Thr Ala Gly Thr Asp Thr Ser Ser Ser Thr Ile Glu Trp Ala
 305

 310
 315

ctg gcg gag atg ata aaa aac ccg gcg atc ctc aag aaa gca cac gat 1071

| Leu               | Ala                             | Glu<br>320   | Met         | Ile      | Lys               | Asn       | Pro<br>325 | Ala       | Ile       | Leu       | Lys       | Lys<br>330 | Ala       | His       | Asp       |      |
|-------------------|---------------------------------|--------------|-------------|----------|-------------------|-----------|------------|-----------|-----------|-----------|-----------|------------|-----------|-----------|-----------|------|
|                   |                                 |              |             |          | gta<br>Val        |           |            |           |           |           |           |            |           |           |           | 1119 |
|                   |                                 |              |             |          | tac<br>Tyr<br>355 |           |            |           |           |           |           |            |           |           |           | 1167 |
|                   |                                 |              |             |          | cct<br>Pro        |           |            |           |           |           |           |            |           |           |           | 1215 |
|                   |                                 |              |             | 00       | tac<br>Tyr        |           |            |           |           |           |           |            |           |           | 0         | 1263 |
|                   |                                 |              |             |          | gga<br>Gly        |           |            |           |           |           |           |            |           |           |           | 1311 |
|                   |                                 |              |             |          | agg<br>Arg        |           |            |           |           |           |           |            |           |           |           | 1359 |
|                   |                                 |              |             |          | ttt<br>Phe<br>435 |           |            |           |           |           |           |            |           |           |           | 1407 |
|                   |                                 |              |             |          | agg<br>Arg        |           |            |           |           |           |           |            |           |           |           | 1455 |
|                   |                                 |              |             |          | tct<br>Ser        |           |            |           |           |           |           |            |           |           |           | 1503 |
|                   |                                 |              |             |          | gag<br>Glu        |           |            |           |           |           |           |            |           |           |           | 1551 |
|                   |                                 |              |             |          | gtt<br>Val        |           |            |           |           |           |           |            |           |           |           | 1599 |
| cct<br>Pro<br>510 | taaq                            | gtaat        | tag 1       | tatti    | taagi             | zg c      | gtcg       | gaata     | a tco     | gaagi     | ccta      | tato       | gatti     | tc        |           | 1652 |
| ttg               | tgett                           | :gt t        | ttcta       | atcca    | ac ta             | atgti     | tgtaa      | a gaa     | attca     | atct      | ccga      | atcci      | cct ç     | ggtgę     | gtcatg    | 1712 |
| gct.              | atata                           | atc ç        | gtaai       | ttct     | tt ti             | ccgaa     | aaaaa      | a aaa     | aaaaa     | aaaa      | aaa       |            |           |           |           | 1755 |
| <21<br><21        | 0> SI<br>1> LI<br>2> T<br>3> OI | ENGTH<br>PE: | H: 5<br>PRT | 10       | irrh              | inum      | kel:       | logi:     | Ĺ         |           |           |            |           |           |           |      |
| <40               | )> SI                           | EQUEI        | NCE :       | 70       |                   |           |            |           |           |           |           |            |           |           |           |      |
| Met<br>1          | Gln                             | Ile          | Ile         | Ile<br>5 | Pro               | Val       | Leu        | Leu       | Lys<br>10 | Glu       | Leu       | Thr        | Val       | Ala<br>15 | Ala       |      |
| Leu               | Leu                             | Tyr          | Val<br>20   | Phe      | Thr               | Asn       | Ile        | Leu<br>25 | Ile       | Arg       | Ser       | Leu        | Leu<br>30 | Thr       | Arg       |      |
| Pro               | Суз                             | His<br>35    | Arg         | Leu      | Pro               | Pro       | Gly<br>40  | Pro       | Arg       | Gly       | Phe       | Pro<br>45  | Val       | Val       | Gly       |      |
| Ala               | Leu<br>50                       | Pro          | Leu         | Leu      | Gly               | Ser<br>55 | Met        | Pro       | His       | Val       | Ala<br>60 | Leu        | Ala       | ГÀа       | Met       |      |
| Ser<br>65         | ГÀа                             | Thr          | Tyr         | Gly      | Pro<br>70         | Val       | Ile        | Tyr       | Leu       | Lys<br>75 | Val       | Gly        | Ala       | His       | Gly<br>80 |      |
| Met               | Ala                             | Val          | Ala         | Ser      | Thr               | Pro       | Glu        | Ser       | Ala       | Lys       | Ala       | Phe        | Leu       | Lys       | Thr       |      |

## -continued

| _          | _          | _          | _          | 85         | _          | _          | _          | _          | 90         | _          | _          | _          | _          | 95          | _          |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|------------|
| Leu        | Asp        | Thr        | Asn<br>100 | Phe        | Ser        | Asn        | Arg        | Pro<br>105 | Pro        | Asn        | Ala        | Gly        | Ala<br>110 | Thr         | His        |
| Leu        | Ala        | Tyr<br>115 | Asn        | Ser        | Gln        | Asp        | Met<br>120 | Val        | Phe        | Ala        | Ala        | Tyr<br>125 | Gly        | Pro         | Arg        |
| Trp        | Arg<br>130 | Leu        | Leu        | Arg        | Гла        | Leu<br>135 | Ser        | Asn        | Leu        | His        | Met<br>140 | Leu        | Gly        | Thr         | Lys        |
| Ala<br>145 | Leu        | Asp        | Asp        | Trp        | Ala<br>150 | Asn        | Val        | Arg        | Val        | Ser<br>155 | Glu        | Val        | Gly        | Tyr         | Met<br>160 |
| Leu        | Glu        | Asp        | Met        | His<br>165 | Gly        | Ala        | Ser        | Gly        | Arg<br>170 | Gly        | Glu        | Ala        | Val        | Gly<br>175  | Val        |
| Pro        | Gly        | Met        | Leu<br>180 | Val        | Tyr        | Ala        | Met        | Ala<br>185 | Asn        | Met        | Ile        | Gly        | Gln<br>190 | Val         | Ile        |
| Leu        | Ser        | Arg<br>195 | Arg        | Val        | Phe        | Val        | Thr<br>200 | Arg        | Gly        | Glu        | Glu        | Leu<br>205 | Asn        | Glu         | Phe        |
| Lys        | Asp<br>210 |            | Val        | Val        | Glu        | Leu<br>215 |            | Thr        | Ser        | Ala        | Gly<br>220 |            | Phe        | Asn         | Ile        |
| Gly<br>225 |            | Phe        | Ile        | Pro        | Ser<br>230 |            | Ala        | Trp        | Met        | Asp<br>235 |            | Gln        | Gly        | Ile         | Glu<br>240 |
|            | Gly        | Met        | Lys        | Gly<br>245 |            | His        | Lys        | Lys        | Phe<br>250 |            | Asp        | Leu        | Ile        | Ser<br>255  |            |
| Met        | Leu        | Glu        |            |            | Leu        | Ala        | Ser        |            |            | Ile        | Arg        | Lys        |            | 7222<br>TÀR | Pro        |
| Aap        | Phe        |            | 260<br>Asp | Val        | Ile        | Leu        |            | 265<br>Asn | Arg        | Asp        | Thr        |            | 270<br>Glu | Gly         | Glu        |
| Arg        |            | 275<br>Thr | Thr        | Ser        | Asn        |            | 280<br>Lys | Ala        | Leu        | Leu        |            | 285<br>Asn | Leu        | Phe         | Thr        |
| Ala        | 290<br>Gly | Thr        | Asp        | Thr        | Ser        | 295<br>Ser | Ser        | Thr        | Ile        | Glu        | зоо<br>Trp | Ala        | Leu        | Ala         | Glu        |
| 305        |            | _          | _          | _          | 310        |            | _          | _          | _          | 315        |            | _          |            |             | 320        |
| Met        | Ile        | ГЛЗ        | Asn        | Pro<br>325 | Ala        | Ile        | Leu        | ГЛЗ        | Lys<br>330 | Ala        | His        | Asp        | Glu        | Met<br>335  | Asp        |
| Gln        | Val        | Val        | Gly<br>340 | Arg        | Asn        | Arg        | Arg        | Leu<br>345 | Met        | Glu        | Ser        | Asp        | Ile<br>350 | Pro         | Lys        |
| Leu        | Pro        | Tyr<br>355 | Leu        | Gln        | Ala        | Ile        | Суз<br>360 | Lys        | Glu        | Ser        | Phe        | Arg<br>365 | Lys        | His         | Pro        |
| Ser        | Thr<br>370 | Pro        | Leu        | Asn        | Leu        | Pro<br>375 | Arg        | Ile        | Ser        | Ser        | Gln<br>380 | Ala        | Суз        | Thr         | Val        |
| Asn<br>385 | Gly        | Tyr        | Tyr        | Ile        | Pro<br>390 | Lys        | Asn        | Thr        | Arg        | Leu<br>395 | Asn        | Val        | Asn        | Ile         | Trp<br>400 |
| Ala        | Ile        | Gly        | Arg        | Asp<br>405 | Pro        | Asn        | Val        | Trp        | Glu<br>410 | Asn        | Pro        | Leu        | Glu        | Phe<br>415  | Asn        |
| Pro        | Asp        | Arg        | Phe<br>420 | Met        | Ser        | Gly        | Lys        | Asn<br>425 | Ala        | Lys        | Leu        | Asp        | Pro<br>430 | Arg         | Gly        |
| Asn        | Asp        | Phe<br>435 | Glu        | Leu        | Ile        | Pro        | Phe<br>440 | Gly        | Ala        | Gly        | Arg        | Arg<br>445 | Ile        | Сув         | Ala        |
| Gly        | Ala<br>450 | Arg        | Met        | Gly        | Ile        | Val<br>455 | Leu        | Val        | Glu        | Tyr        | Ile<br>460 | Leu        | Gly        | Ser         | Leu        |
| Val<br>465 | His        | Ser        | Phe        | Asp        | Trp<br>470 | Lys        | Leu        | Pro        | Glu        | Gly<br>475 | Val        | Lys        | Glu        | Met         | Asn<br>480 |
|            | Asp        | Glu        | Ala        |            |            | Leu        | Ala        | Leu        |            |            | Ala        | Val        | Pro        | Leu<br>495  |            |
| Ala        | Met        | Val        |            | 485<br>Pro | Arg        | Leu        | Pro        |            | 490<br>Asn | Суз        | Tyr        | Ala        |            | 495         |            |
|            |            |            | 500        |            |            |            |            | 505        |            |            |            |            | 510        |             |            |

<210> SEQ ID NO 71 <211> LENGTH: 1811 <212> TYPE: DNA <213> ORGANISM: Antirrhinum kellogii <220> FEATURE: <221> NAME/KEY: misc\_feature <223> OTHER INFORMATION: F3'5'cDNA#12 pSPB3146 <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (86)..(1615) <400> SEQUENCE: 71 gatactaaaa accatccaaa ttaagtacct ttagtatgtt caatctctag ttttttatt 60 aatcacaact caatagataa togto atg cag ata ata att cog gto oto otg 112 Met Gln Ile Ile Ile Pro Val Leu Leu 5 aag gag ctc acc gta gca gca tta ctc tat gtt ttc act aac att ctc 160 Lys Glu Leu Thr Val Ala Ala Leu Leu Tyr Val Phe Thr Asn Ile Leu 2.0 10 15 208 ate ege tea ett ete aca aga eee egt eae egt ete eeg eea ggg eea Ile Arg Ser Leu Leu Thr Arg Pro Arg His Arg Leu Pro Pro Gly Pro 30 35 40 aga ggc ttt cca gta gtc ggc gct ctt cca ctc cta ggc agc atg cca Arg Gly Phe Pro Val Val Gly Ala Leu Pro Leu Leu Gly Ser Met Pro 256 45 50 55 cac gtg gcg ctc gcc aaa atg tcc aaa act tat ggt ccc gtc ata tac 304 His Val Ala Leu Ala Lys Met Ser Lys Thr Tyr Gly Pro Val Ile Tyr 65 60 70 cta aaa gta ggc gca cac ggc atg gca gtg gcc tca act cct gaa tcc 352 Leu Lys Val Gly Ala His Gly Met Ala Val Ala Ser Thr Pro Glu Ser 80 85 gcc aaa gcg ttc ctc aaa acc cta gac acc aac ttc tcc aac cgc ccg 400 Ala Lys Ala Phe Leu Lys Thr Leu Asp Thr Asn Phe Ser Asn Arg Pro 90 95 100 105 cca aat gcc ggt gcc act cac ctg gct tat aac tca caa gac atg gtg 448 Pro Asn Ala Gly Ala Thr His Leu Ala Tyr Asn Ser Gln Asp Met Val 110 115 120 ttt gcc gcc tac ggc ccg agg tgg aga ttg ctt aga aag ttg agc aat 496 Phe Ala Ala Tyr Gly Pro Arg Trp Arg Leu Leu Arg Lys Leu Ser Asn 125 130 135 ctc cac atg ttg ggg act aag gct tta gac gat tgg gca aat gtt agg 544 Leu His Met Leu Gly Thr Lys Ala Leu Asp Asp Trp Ala Asn Val Arg 140 145 150 gtt tcg gag gtt gga tac atg tta gag gac atg cat ggg gca agt ggc 592 Val Ser Glu Val Gly Tyr Met Leu Glu Asp Met His Gly Ala Ser Gly 160 165 cgc gga aag gtg gtg ggt gtg ccg ggg atg ttg gtg tac gca atg gct 640 Arg Gly Lys Val Val Gly Val Pro Gly Met Leu Val Tyr Ala Met Ala 170 175 180 185 aat atg ata gga cag gtg ata ctt agt cgg cgt gtt ttc gtg acg aga 688 Asn Met Ile Gly Gln Val Ile Leu Ser Arg Arg Val Phe Val Thr Arg 190 195 200 gaa gaa gaa ttg aac gag ttt aag gat atg gtg gtg gag ctc atg act 736 Glu Glu Leu Asn Glu Phe Lys Asp Met Val Val Glu Leu Met Thr 205 210 215 tog got gga tat tto aat att ggt gat ttt att oog tot ttt goa tgg 784 Ser Ala Gly Tyr Phe Asn Ile Gly Asp Phe Ile Pro Ser Phe Ala Trp 220 225 230 atg gat ttg caa gga ata gag aag gga atg aag ggt ttg cac aaa aag 832 Met Asp Leu Gln Gly Ile Glu Lys Gly Met Lys Gly Leu His Lys Lys

| -concinded                                                                                                                                            |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 235 240 245                                                                                                                                           |      |
| ttt gat gat ttg atc agt aga atg ttg aag gaa cac ctg gcg tca gct<br>Phe Asp Asp Leu Ile Ser Arg Met Leu Lys Glu His Leu Ala Ser Ala<br>250 255 260 265 | 880  |
| cat atc cga aag gag aaa cct gat ttt ctt gat gtc att ttg gct aat<br>His Ile Arg Lys Glu Lys Pro Asp Phe Leu Asp Val Ile Leu Ala Asn<br>270 275 280     | 928  |
| cgt gat act ttg gag gga gga gag agg ctt acc act tct aac atc aag gct<br>Arg Asp Thr Leu Glu Gly Glu Arg Leu Thr Thr Ser Asn Ile Lys Ala<br>285 290 295 | 976  |
| ctt tta ctg aac ttg ttc acc gcc ggt acg gat aca tct tcg agc aca<br>Leu Leu Asn Leu Phe Thr Ala Gly Thr Asp Thr Ser Ser Ser Thr<br>300 305 310         | 1024 |
| ata gag tgg gcg ctg gcg gag atg ata aaa aac ccg gcg atc ctc aag<br>Ile Glu Trp Ala Leu Ala Glu Met Ile Lys Asn Pro Ala Ile Leu Lys<br>315 320 325     | 1072 |
| aaa gca cat gat gaa atg gat caa gtc gta ggc tgg aat cga cgt tta<br>Lys Ala His Asp Glu Met Asp Gln Val Val Gly Trp Asn Arg Arg Leu<br>330 335 340 345 | 1120 |
| atg gag tcg gac ata ccc aaa ctt cca tac cta caa gcg ata tgc aag<br>Met Glu Ser Asp Ile Pro Lys Leu Pro Tyr Leu Gln Ala Ile Cys Lys<br>350 355 360     | 1168 |
| gaa tca ttt cgt aag cac cct tcc act cct tta aat ctg ccc cga atc<br>Glu Ser Phe Arg Lys His Pro Ser Thr Pro Leu Asn Leu Pro Arg Ile<br>365 370 375     | 1216 |
| tct tca caa gca tgc acg gtg aac ggt tac tac ata ccg aag aac acg<br>Ser Ser Gln Ala Cys Thr Val Asn Gly Tyr Tyr Ile Pro Lys Asn Thr<br>380 385 390     | 1264 |
| agg ctc aac gtc aac ata tgg gcg atc gga agg gat ccc aat gtg tgg<br>Arg Leu Asn Val Asn Ile Trp Ala Ile Gly Arg Asp Pro Asn Val Trp<br>395 400 405     | 1312 |
| gag aat ccc ctg gaa ttc aac ccc gac agg ttc atg tcc ggt aag aacGlu Asn Pro Leu Glu Phe Asn Pro Asp Arg Phe Met Ser Gly Lys Asn410415420425            | 1360 |
| gca aag ctc gat ccg aga gga aat gat ttt gaa ctc att ccg ttc ggg<br>Ala Lys Leu Asp Pro Arg Gly Asn Asp Phe Glu Leu Ile Pro Phe Gly<br>430 435 440     | 1408 |
| gct ggt cga agg att tgt gcg gga gcg agg atg ggg ata gtt ctt gtg<br>Ala Gly Arg Arg Ile Cys Ala Gly Ala Arg Met Gly Ile Val Leu Val<br>445 450 455     | 1456 |
| gaa tat ata ttg gga agt ttg gtg cat tct ttt gat tgg aaa ttg ccc<br>Glu Tyr Ile Leu Gly Ser Leu Val His Ser Phe Asp Trp Lys Leu Pro<br>460 465 470     | 1504 |
| gaa gga gtg aag gag atg aat ttg gat gag gct ttt ggg ctt gct ttg<br>Glu Gly Val Lys Glu Met Asn Leu Asp Glu Ala Phe Gly Leu Ala Leu<br>475 480 485     | 1552 |
| caa aaa gct gtt cct ctt gca gca atg gtt act ccg agg ttg cct tca<br>Gln Lys Ala Val Pro Leu Ala Ala Met Val Thr Pro Arg Leu Pro Ser<br>490 495 500 505 | 1600 |
| aat tgt tat gct cct taagtaatag tatttaagtg cgtccgaata tcgaagttta<br>Asn Cys Tyr Ala Pro<br>510                                                         | 1655 |
| tatgattttc ttgtgcttgt ttctatccac tatgttgtaa gaattcatct ccgatcctct                                                                                     | 1715 |
| ggtggtcatg gctatatatc gtaattettt ttetatgteg taetaatate aateaattat                                                                                     | 1775 |
| attttcaaac ttttttctaa aaaaaaaaaa aaaaaa                                                                                                               | 1811 |
|                                                                                                                                                       |      |

<210> SEQ ID NO 72 <211> LENGTH: 510

|            | 2 > T<br>3 > OI |            |            | Ant        | irrh       | inum       | kell       | logii      | i          |            |            |            |            |            |            |
|------------|-----------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| <40        | 0> SI           | EQUEI      | NCE :      | 72         |            |            |            |            |            |            |            |            |            |            |            |
| Met<br>1   | Gln             | Ile        | Ile        | Ile<br>5   | Pro        | Val        | Leu        | Leu        | Lys<br>10  | Glu        | Leu        | Thr        | Val        | Ala<br>15  | Ala        |
| Leu        | Leu             | Tyr        | Val<br>20  | Phe        | Thr        | Asn        | Ile        | Leu<br>25  | Ile        | Arg        | Ser        | Leu        | Leu<br>30  | Thr        | Arg        |
| Pro        | Arg             | His<br>35  | Arg        | Leu        | Pro        | Pro        | Gly<br>40  | Pro        | Arg        | Gly        | Phe        | Pro<br>45  | Val        | Val        | Gly        |
| Ala        | Leu<br>50       | Pro        | Leu        | Leu        | Gly        | Ser<br>55  | Met        | Pro        | His        | Val        | Ala<br>60  | Leu        | Ala        | Lys        | Met        |
| Ser<br>65  | Lys             | Thr        | Tyr        | Gly        | Pro<br>70  | Val        | Ile        | Tyr        | Leu        | Lys<br>75  | Val        | Gly        | Ala        | His        | Gly<br>80  |
| Met        | Ala             | Val        | Ala        | Ser<br>85  | Thr        | Pro        | Glu        | Ser        | Ala<br>90  | Lys        | Ala        | Phe        | Leu        | Lys<br>95  | Thr        |
| Leu        | Asp             | Thr        | Asn<br>100 | Phe        | Ser        | Asn        | Arg        | Pro<br>105 | Pro        | Asn        | Ala        | Gly        | Ala<br>110 | Thr        | His        |
| Leu        | Ala             | Tyr<br>115 | Asn        | Ser        | Gln        | Asp        | Met<br>120 | Val        | Phe        | Ala        | Ala        | Tyr<br>125 | Gly        | Pro        | Arg        |
| Trp        | Arg<br>130      | Leu        | Leu        | Arg        | Гла        | Leu<br>135 | Ser        | Asn        | Leu        | His        | Met<br>140 | Leu        | Gly        | Thr        | Lys        |
| Ala<br>145 | Leu             | Asp        | Asp        | Trp        | Ala<br>150 | Asn        | Val        | Arg        | Val        | Ser<br>155 | Glu        | Val        | Gly        | Tyr        | Met<br>160 |
| Leu        | Glu             | Asp        | Met        | His<br>165 | Gly        | Ala        | Ser        | Gly        | Arg<br>170 | Gly        | Lys        | Val        | Val        | Gly<br>175 | Val        |
| Pro        | Gly             | Met        | Leu<br>180 | Val        | Tyr        | Ala        | Met        | Ala<br>185 | Asn        | Met        | Ile        | Gly        | Gln<br>190 | Val        | Ile        |
| Leu        | Ser             | Arg<br>195 | Arg        | Val        | Phe        | Val        | Thr<br>200 | Arg        | Glu        | Glu        | Glu        | Leu<br>205 | Asn        | Glu        | Phe        |
| Lys        | Asp<br>210      | Met        | Val        | Val        | Glu        | Leu<br>215 | Met        | Thr        | Ser        | Ala        | Gly<br>220 | Tyr        | Phe        | Asn        | Ile        |
| Gly<br>225 | Asp             | Phe        | Ile        | Pro        | Ser<br>230 | Phe        | Ala        | Trp        | Met        | Asp<br>235 | Leu        | Gln        | Gly        | Ile        | Glu<br>240 |
| Lys        | Gly             | Met        | Гла        | Gly<br>245 | Leu        | His        | Lys        | Lys        | Phe<br>250 | Asp        | Asp        | Leu        | Ile        | Ser<br>255 | Arg        |
| Met        | Leu             | Lys        | Glu<br>260 | His        | Leu        | Ala        | Ser        | Ala<br>265 | His        | Ile        | Arg        | Lys        | Glu<br>270 | Lys        | Pro        |
| Asp        | Phe             | Leu<br>275 | Asp        | Val        | Ile        | Leu        | Ala<br>280 | Asn        | Arg        | Asp        | Thr        | Leu<br>285 | Glu        | Gly        | Glu        |
| Arg        | Leu<br>290      | Thr        | Thr        | Ser        | Asn        | Ile<br>295 | Lys        | Ala        | Leu        | Leu        | Leu<br>300 | Asn        | Leu        | Phe        | Thr        |
| Ala<br>305 | Gly             | Thr        | Asp        | Thr        | Ser<br>310 | Ser        | Ser        | Thr        | Ile        | Glu<br>315 | Trp        | Ala        | Leu        | Ala        | Glu<br>320 |
| Met        | Ile             | LÀa        | Asn        | Pro<br>325 | Ala        | Ile        | Leu        | Lys        | Lya<br>330 | Ala        | His        | Asp        | Glu        | Met<br>335 | Asp        |
| Gln        | Val             | Val        | Gly<br>340 | Trp        | Asn        | Arg        | Arg        | Leu<br>345 | Met        | Glu        | Ser        | Asp        | Ile<br>350 | Pro        | Lys        |
| Leu        | Pro             | Tyr<br>355 | Leu        | Gln        | Ala        | Ile        | Сув<br>360 | Lys        | Glu        | Ser        | Phe        | Arg<br>365 | Lys        | His        | Pro        |
| Ser        | Thr<br>370      | Pro        | Leu        | Asn        | Leu        | Pro<br>375 | Arg        | Ile        | Ser        | Ser        | Gln<br>380 | Ala        | Суз        | Thr        | Val        |
| Asn<br>385 | Gly             | Tyr        | Tyr        | Ile        | Pro<br>390 | Lys        | Asn        | Thr        | Arg        | Leu<br>395 | Asn        | Val        | Asn        | Ile        | Trp<br>400 |
|            |                 |            |            |            |            |            |            |            |            |            |            |            |            |            |            |

#### -continued

Ala Ile Gly Arg Asp Pro Asn Val Trp Glu Asn Pro Leu Glu Phe Asn 405 410 415 Pro Asp Arg Phe Met Ser Gly Lys Asn Ala Lys Leu Asp Pro Arg Gly 420 425 430 Asn Asp Phe Glu Leu Ile Pro Phe Gly Ala Gly Arg Arg Ile Cys Ala 435 440 445 Gly Ala Arg Met Gly Ile Val Leu Val Glu Tyr Ile Leu Gly Ser Leu 455 460 450 Val His Ser Phe Asp Trp Lys Leu Pro Glu Gly Val Lys Glu Met Asn 470 465 475 480 Leu Asp Glu Ala Phe Gly Leu Ala Leu Gln Lys Ala Val Pro Leu Ala 485 490 495 Ala Met Val Thr Pro Arg Leu Pro Ser Asn Cys Tyr Ala Pro 500 505 510 <210> SEQ ID NO 73 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: ADH-AkF3'5'H-Fd <400> SEQUENCE: 73 caagaaaaat aaatgcagat aataattccg gtcc 34 <210> SEQ ID NO 74 <211> LENGTH: 23 <211> TYPE: DNA
<213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: Nsil-AkF3'5'H-Rv <400> SEQUENCE: 74 atgcatgtcc tctaacatgt atc 23 <210> SEQ ID NO 75 <211> LENGTH: 35 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: AkF3'5'H-ADH-Rv <400> SEQUENCE: 75 tattatetge atttatttt ettgatttee tteae 35 <210> SEQ ID NO 76 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: Nsil-AkF3'5'H-Rv <400> SEQUENCE: 76 atgcatgtcc tctaacatgt atc 23 <210> SEQ ID NO 77 <211> LENGTH: 1667 <212> TYPE: DNA <213> ORGANISM: Cineraria <220> FEATURE: <221> NAME/KEY: misc\_feature <223> OTHER INFORMATION: Ci5a18

<220> FEATURE:

| <221> NAME/<br><222> LOCAT        |             | (1550)                            |           |   |   |                               |     |
|-----------------------------------|-------------|-----------------------------------|-----------|---|---|-------------------------------|-----|
| <400> SEQUE                       | INCE: 77    |                                   |           |   |   |                               |     |
| gaattactaa                        | ccaattctta  | a cgttgtcaa                       | g taaataa |   |   | ta acc cta<br>eu Thr Leu<br>5 | 56  |
|                                   |             | act ggt ttg<br>Ihr Gly Leu        |           |   |   |                               | 104 |
| ctt agc cgt<br>Leu Ser Arg<br>25  |             |                                   |           |   |   |                               | 152 |
|                                   |             | atg cac ctt<br>Met His Leu<br>45  |           |   |   |                               | 200 |
| gcg gac ttg<br>Ala Asp Leu<br>55  | . Ala Lys I |                                   |           |   |   |                               | 248 |
| tcc gtt gat<br>Ser Val Asp        |             | gtg gcc tcg<br>Val Ala Ser        |           |   |   |                               | 296 |
| tta aag gtg<br>Leu Lys Val        |             |                                   | -         |   |   |                               | 344 |
| gct aaa cat<br>Ala Lys His<br>105 | Met Ala I   |                                   | -         |   |   | -                             | 392 |
| ggt cca agg<br>Gly Pro Arg<br>120 |             |                                   |           |   |   |                               | 440 |
| tct gcc aaa<br>Ser Ala Lys<br>135 | Ala Leu T   | act gat ttt<br>Thr Asp Phe<br>140 |           |   |   |                               | 488 |
| atg ata cto<br>Met Ile Leu        |             |                                   |           | - |   |                               | 536 |
| cta gat caa<br>Leu Asp Gln        |             |                                   | -         |   |   |                               | 584 |
| atg tta gac<br>Met Leu Asp<br>185 | ) Arg Arg V |                                   |           |   |   |                               | 632 |
| tac aag gat<br>Tyr Lys Asp<br>200 |             | gtt gag ttg<br>/al Glu Leu<br>205 |           |   |   |                               | 680 |
|                                   | o Tyr Ile F | cct tgg ctt<br>Pro Trp Leu<br>220 |           |   |   |                               | 728 |
| gtc aaa agg<br>Val Lys Arg        |             | -                                 |           | - | - | -                             | 776 |
|                                   |             | cat act att<br>His Thr Ile        |           |   |   |                               | 824 |
| tta agc aca<br>Leu Ser Thr<br>265 | Met Ile S   |                                   | -         |   |   |                               | 872 |
| aag ctt tcg<br>Lys Leu Ser        |             |                                   |           |   |   |                               | 920 |

99

# 100

|              |                                  |                |             |          |                   |       |           |           |           |       |       | con       |           | uea       |        |      |
|--------------|----------------------------------|----------------|-------------|----------|-------------------|-------|-----------|-----------|-----------|-------|-------|-----------|-----------|-----------|--------|------|
|              | 280                              |                |             |          |                   | 285   |           |           |           |       | 290   |           |           |           |        |      |
|              |                                  |                |             |          | tca<br>Ser<br>300 |       |           |           |           |       |       |           |           |           |        | 968  |
|              |                                  | -              |             |          | cag<br>Gln        |       | -         |           |           |       |       | -         | -         | -         | -      | 1016 |
|              |                                  |                |             |          | aac<br>Asn        |       |           |           |           |       |       |           |           |           |        | 1064 |
|              |                                  |                |             |          | gcc<br>Ala        |       |           |           |           |       |       |           |           |           |        | 1112 |
|              |                                  |                |             |          | ctg<br>Leu        |       |           |           |           |       |       |           |           |           |        | 1160 |
| -            |                                  |                |             | -        | cct<br>Pro<br>380 | -     |           |           |           |       |       | -         |           |           |        | 1208 |
|              |                                  |                |             |          | tca<br>Ser        |       |           |           |           |       |       |           |           |           |        | 1256 |
|              |                                  |                |             |          | atc<br>Ile        |       |           |           |           |       |       |           |           |           |        | 1304 |
|              |                                  |                |             |          | att<br>Ile        |       |           |           |           |       |       |           |           |           |        | 1352 |
|              |                                  |                |             |          | gga<br>Gly        |       |           |           |           |       |       |           |           |           |        | 1400 |
|              |                                  |                |             |          | gat<br>Asp<br>460 |       |           |           |           |       |       |           |           |           |        | 1448 |
|              |                                  |                |             |          | gaa<br>Glu        |       |           |           |           |       |       |           |           |           |        | 1496 |
|              |                                  |                | ~ ~         |          | ccg<br>Pro        |       |           |           |           |       |       |           | •         |           | 00     | 1544 |
|              | ggt<br>Gly                       | taa            | ggaa        | ata a    | aact              | geet  | gt ti     | gtaa      | agata     | a aat | cctgi | ttg       | aati      | tato      | gta    | 1600 |
| taa          | aataq                            | gtt a          | atge        | taaga    | aa ci             | tatti | ttta      | c aaa     | ataa      | aagt  | atai  | tggi      | tt (      | gaaaa     | aaaaaa | 1660 |
| aaa          | aaaa                             |                |             |          |                   |       |           |           |           |       |       |           |           |           |        | 1667 |
| <21:<br><21: | 0> SI<br>L> LI<br>2> TY<br>3> OI | ENGTI<br>ZPE : | H: 5<br>PRT | 04       | erar              | ia    |           |           |           |       |       |           |           |           |        |      |
| <400         | )> SI                            | EQUEI          | NCE:        | 78       |                   |       |           |           |           |       |       |           |           |           |        |      |
| Met<br>1     | Ser                              | Ile            | Leu         | Thr<br>5 | Leu               | Ile   | Сув       | Thr       | Phe<br>10 | Ile   | Thr   | Gly       | Leu       | Met<br>15 | Phe    |      |
| Fyr          | Gly                              | Leu            | Val<br>20   | Asn      | Leu               | Leu   | Ser       | Arg<br>25 | Arg       | Ala   | Ser   | Arg       | Leu<br>30 | Pro       | Pro    |      |
| Gly          | Pro                              | Thr<br>35      | Pro         | Trp      | Pro               | Ile   | Ile<br>40 | Gly       | Asn       | Leu   | Met   | His<br>45 | Leu       | Gly       | Гла    |      |
| Jeu          | Pro                              | His            | His         | Ser      | Leu               | Ala   | Asp       | Leu       | Ala       | Lys   | Lys   | Tyr       | Gly       | Pro       | Leu    |      |

|            | 50         |            |            |            |            | 55         |            |            |            |            | 00         |            |            |            |            |  |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--|
| Ile<br>65  | His        | Val        | Arg        | Leu        | Gly<br>70  | Ser        | Val        | Asp        | Val        | Val<br>75  | Val        | Ala        | Ser        | Ser        | Ala<br>80  |  |
| Ser        | Val        | Ala        | Gly        | Gln<br>85  | Phe        | Leu        | Lys        | Val        | His<br>90  | Asp        | Ala        | Asn        | Phe        | Ala<br>95  | Asn        |  |
| Arg        | Pro        | Pro        | Asn<br>100 | Ser        | Gly        | Ala        | Lys        | His<br>105 | Met        | Ala        | Tyr        | Asn        | Tyr<br>110 | His        | Asp        |  |
| Met        | Val        | Phe<br>115 | Ala        | Pro        | Tyr        | Gly        | Pro<br>120 | Arg        | Trp        | Arg        | Met        | Leu<br>125 | Arg        | Lys        | Met        |  |
| Суз        | Ser<br>130 | Met        | His        | Leu        | Phe        | Ser<br>135 | Ala        | Lys        | Ala        | Leu        | Thr<br>140 | Asp        | Phe        | Arg        | Gln        |  |
| Val<br>145 | Arg        | Gln        | Glu        | Glu        | Val<br>150 | Met        | Ile        | Leu        | Thr        | Arg<br>155 | Val        | Leu        | Ala        | Gly        | Thr<br>160 |  |
| Glu        | Gln        | Ser        | Ala        | Val<br>165 | Lys        | Leu        | Asp        | Gln        | Gln<br>170 | Leu        | Asn        | Val        | Суз        | Phe<br>175 | Ala        |  |
| Asn        | Thr        | Leu        | Ser<br>180 | Arg        | Met        | Met        | Leu        | Asp<br>185 | Arg        | Arg        | Val        | Phe        | Gly<br>190 | Asp        | Gly        |  |
| Asp        | Pro        | Lys<br>195 | Ala        | Asp        | Asp        | Tyr        | Lys<br>200 | Asp        | Met        | Val        | Val        | Glu<br>205 | Leu        | Met        | Thr        |  |
| Leu        | Ala<br>210 | Gly        | Gln        | Phe        | Asn        | Ile<br>215 | Gly        | Asp        | Tyr        | Ile        | Pro<br>220 | Trp        | Leu        | Asb        | Leu        |  |
| Leu<br>225 | Asp        | Leu        | Gln        | Gly        | Ile<br>230 | Val        | Lys        | Arg        | Met        | Lys<br>235 | Lys        | Val        | His        | Ser        | Gln<br>240 |  |
| Phe        | Asp        | Ser        | Phe        | Leu<br>245 | Asp        | Thr        | Ile        | Ile        | Asp<br>250 | Glu        | His        | Thr        | Ile        | Gly<br>255 | Thr        |  |
| Gly        | Arg        | His        | Val<br>260 | Asp        | Met        | Leu        | Ser        | Thr<br>265 | Met        | Ile        | Ser        | Leu        | Lys<br>270 | Aab        | Asn        |  |
| Ala        | Asp        | Gly<br>275 | Glu        | Gly        | Gly        | Lys        | Leu<br>280 | Ser        | Phe        | Ile        | Glu        | Ile<br>285 | Lys        | Ala        | Leu        |  |
| Leu        | Leu<br>290 | Asn        | Leu        | Phe        | Ser        | Ala<br>295 | Gly        | Thr        | Asp        | Thr        | Ser<br>300 | Ser        | Ser        | Thr        | Val        |  |
| Glu<br>305 | Trp        | Gly        | Ile        | Ala        | Glu<br>310 | Leu        | Ile        | Arg        | His        | Pro<br>315 | Gln        | Leu        | Met        | Lys        | Gln<br>320 |  |
| Ala        | Gln        | Glu        | Glu        | Met<br>325 | Asp        | Ile        | Val        | Ile        | Gly<br>330 | Lys        | Asn        | Arg        | Leu        | Val<br>335 | Thr        |  |
| Glu        | Met        | Asp        | Ile<br>340 | Ser        | Gln        | Leu        | Thr        | Phe<br>345 | Leu        | Gln        | Ala        | Ile        | Val<br>350 | Lys        | Glu        |  |
| Thr        | Phe        | Arg<br>355 | Leu        | His        | Pro        | Ala        | Thr<br>360 | Pro        | Leu        | Ser        | Leu        | Pro<br>365 | Arg        | Ile        | Ala        |  |
| Ser        | Glu<br>370 | Ser        | Суз        | Glu        | Val        | Lys<br>375 | Gly        | Tyr        | His        | Val        | Pro<br>380 | Lys        | Gly        | Ser        | Ile        |  |
| Leu<br>385 | Phe        | Val        | Asn        | Val        | Trp<br>390 | Ala        | Ile        | Ala        | Arg        | Gln<br>395 | Ser        | Glu        | Leu        | Trp        | Thr<br>400 |  |
| Asp        | Pro        | Leu        | Glu        | Phe<br>405 | Arg        | Pro        | Gly        | Arg        | Phe<br>410 | Leu        | Ile        | Pro        | Gly        | Glu<br>415 | Lys        |  |
| Pro        | Asn        | Val        | Glu<br>420 | Val        | Lys        | Pro        | Asn        | Asp<br>425 | Phe        | Glu        | Ile        | Val        | Pro<br>430 | Phe        | Gly        |  |
| Gly        | Gly        | Arg<br>435 | Arg        | Ile        | Суз        | Ala        | Gly<br>440 | Met        | Ser        | Leu        | Gly        | Leu<br>445 | Arg        | Met        | Val        |  |
| Asn        | Leu<br>450 | Leu        | Ile        | Ala        | Thr        | Leu<br>455 | Val        | Gln        | Ala        | Phe        | Asp<br>460 | Trp        | Glu        | Leu        | Ala        |  |
| Asn<br>465 | Gly        | Leu        | Glu        | Pro        | Glu<br>470 | Lys        | Leu        | Asn        | Met        | Glu<br>475 | Glu        | Val        | Phe        | Gly        | Ile<br>480 |  |
|            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |  |

Ser Leu Gln Arg Val Gln Pro Leu Leu Val His Pro Arg Pro Arg Leu 485 490 495 Ala Arg His Val Tyr Gly Thr Gly 500 <210> SEQ ID NO 79 <211> LENGTH: 8552 <212> TYPE: DNA <213> ORGANISM: Cineraria <220> FEATURE: <221> NAME/KEY: misc\_feature <223> OTHER INFORMATION: gCi01-pBluestar <400> SEQUENCE: 79 gcggccgcgg atcccgggaa ttctcgatcc agccatgtgt ctagtacaac catacagacg 60 attaaaaaaa aaactttaaa ccacaaaacg ggttttgcaa acgaagaaat tgcctcaaaa 120 catttecata tqqaqtttaq gqacaqaqtq cqtttgctac attaaacaac tcttttataa 180 aaaaacatag cggtacgaga atgacccact aaccgttcat gtccattggc aaaagttact 240 attgtgagtc ttgtatatac atttaaaaaa aaagaatata tcagttccat aaagggcctg 300 360 cttqatttqa aaaattacqa qaataacaaa tatttqqqqqt qtcattttat aaaatatcaa 420 aattttaaaa ctattttaca aaatqttaac aaqtaaqttq ttttttttt tttttcaca 480 agcagttgaa acagtttttg ttgaacgtga agttatagct ttacttgaag tttgatattt 540 tggcatcttg acactacatg tctttctagt gtgaccctta tcttacaact atcacatgtc 600 aacggttttg tctgtccttt ggatagtata cggtctttgt tttaggacgt ctcgcatgtg 660 tcctctctat ggtggtgggt tgatcgtatg aatccttagg atcgtagcca tttagaagga 720 tttccgacat ggaatatcaa tcatgtatat gtacgtttat aattctcggc gttgaaccaa 780 tgttgtgtcg aactccccgac atcgttcatt tccaaatgtg ttaaaactgt tgtaaggtgt 840 gaacaaggta taccatattt ttgccaaact tgacaactgc atttttttta tcatgttgtc 900 acacacctca tacatttatc attaactggt atgactttcc atccaaactt gacaagctct 960 taaccatttg gcgacatcta aactattcga tagtgactta attcgtaagt taatgcacaa 1020 atgtcgacaa catattccgc gagtcgcatc tggtatggaa cacaaatgga tcaagagggc 1080 taaaacccat gaggttagaa aattttactt ccaagttcaa gttcatttga tacaagcact 1140 gcaaaatcat tctgcagact aatctaaatc ttattcttcc agagatgata agttagtttg 1200 cageteggtt tttatgtttt ettgataegt ttatetgtag atgtgatega aatgatagta 1260 cacgegetta ttttttgtag tegtategea tatgttagtt aaaaagtetg aaactaaett 1320 aaaaagtttg tcattttgaa taggtggtag ttgaaaatta ggagtataag tttacaaggg 1380 ttqqtqttac ttaacaatct cctaatcttt aaqtcattct tttqattttt cqqcataaat 1440 atatcgatga caatctccct acataaacgc gattttggtt aataacctga ggtagaaata 1500 tggctggggg tggagaactt agtactatca caacaaaaac aggcgaacat gtggttagga 1560 ggccacgggg caggccagct gggtcaaaaa acaggccgaa accacccatt atcattaccc 1620 gagacagtgc caatacgttg cgggctcatg ccatggaggt tagcccaggg tgtgacattg 1680 ttgagagett agecaetttt getaggagga aacaacaagg gatttgggtg etaagtgeeg 1740 ctggatttgt gagcaatgtt atgttgcgtc aacctggccc atcacaggct ggtacgggtt 1800 ccgggcctat tgtcacactt catggccggt ttgagatttt atctttggtt ggttctgtat 1860

-continued

105

106

#### tgccacatcc ggctccgcca ggtgtcactg ggttagccat atatttagtt ggcccgcagg 1920 gccaagtcgt gggtggtgcc attgctggcc cactcatgac atcgggacct gtggtgctca 1980 tggcagccac tttcatgaat gccactttcg ataggttgcc tatcgaaaaa gatgaaatgg 2040 ttgcagccac tactacacac gatcgacatc accattgtgt caatggtgtt tcggatattt 2100 atgggacgac ccaacaaaac atgctttcta acacaaccct ccctcatccc gagatttata 2160 2220 cctggtcaac ggctcgacca ttgtccaagg cataagttat ggaaaagaaa aaataaaaaa catatagaaa gtaaactttt aaaacttgtg taagcccaaa ttgtattact caagatcggc 2280 aggcgattta cgacctcagt tacgtgttta agcgtttgat atgtaaactt ttacgagcga 2340 2400 gtatgtttct ggtatcaaaa gttattatca gtttgtgttt ctaaatcctt aacagaatca 2460 atatgcattc gacttacagt gattaagacg atcatagaag ggattatcgt cacaaaattt 2520 agtcagatac ttatgaactg acaaaatcct ttacagaatc aatatgcatt agacttacag 2580 tgcaaacata tacgccgaga gctaaaagcg acggtgataa gagtagaatc gtaatttcac 2640 agaatcagca gacttettat aaagaaaaca caactagaaa teaagtteae aaactaette 2700 atttactaat ctttgatgtt caacaagtcg ttggcgaggg catgggtact tcggtaattt 2760 cacacaactc atgaatgttt ttatgaagaa aacacttcca agtataaacc aagttctcaa 2820 2880 actaatatqt tcactaatca atqacqttcq aqtaaatcac acctqaatac aatqaqccta gattttacct ggcaattcga attttcaaac cattgaacta atcttttgca ataattctct 2940 3000 tgcaccaaga tcatcgggtg aacgagaggt ccactcctgg taatggcgaa gactaccagt gaaatctgta aaaagcccgt caaggcgtca actcccattg tgtctatcca gtaattgtat 3060 tccatatatg ggccttcaca gaatttgaaa tgcaagaact ggttttcatt gcgaaatgtg 3120 taagggtgca gctgcaagta ttagtaaaag acgttcggtt tgacttttga ggtcaacaca 3180 tagaaaaatt ctactccaat tttactcgaa gtaatgtgat tttcaggaaa gattacaaag 3240 aaactcgtaa catattaaat atgggacaat attagtatta agaacttacc cagattcaaa 3300 tcagtttgaa aatttgaaag ttatatataa agataaaatt tgacctctca aggtcaaaca 3360 gagaaatcca actccgttta tacacaacct taacgaaatt ttaagaaaat atcaacgatt 3420 3480 accaaaacag ttctaacatg ttaacacgtg gaaacgattc gtctcttgag actaagtaaa ttatatttac attaatgtgt gattctgaaa aaaggtcgtc aaaatatcta ttaaatctaa 3540 tgtacctgta gattatgggc gtgagctcgg gttttgagat tgggaggcgt ttgaatgtag 3600 ttatetttea caggaacaac agtgtettte catggaceaa taeegacaac atattetttg 3660 atatatttga agtaacgatc tgaagtgatt tctgcatacg tctgcaaatg aaaaagaaat 3720 cagattataa acatccattg caaactatcc ttgcatcgtg tttggatgtt cgttttaagc 3780 gagtatttta tggaataggg agaatcagac aattagttgt aataaaacat gatctttaat 3840 tgtgctacta gtttaagtta taatgataat agaaaacatt tagtcttcgg aaaattatat 3900 aaattaccaa aaatgggttt aactgtttca aaccaaaagt ggcaagatgt caggtcggat 3960 ggattgggta acgggtcaaa atgggttgga ctgaaacatg ttcaaacata gcgcgtaggc 4020 cgtagagatt acaaaaattc tccgttccaa ataaggttaa cagatatgac tatgctgact 4080 ttttaagtgt caaatgcgat tctcttttcc ggtatgcata aaaaactgac gacggacatt 4140 acactatata aaaatttaga aggttataat aaaccaagaa aatataattg tattaaattg 4200

107

## -continued

|            |            |            |            | -contir    | nued       |      |
|------------|------------|------------|------------|------------|------------|------|
| tgtgagttat | atgaattaca | tagaaccttt | tatatatggt | tgaattacct | tgctgaacaa | 4260 |
| gaaacctaaa | cctattagaa | atgtctcaaa | aatcctaagc | ttcaggaata | ccttcccggc | 4320 |
| cttagcgacg | aggaagatat | gctagagtgt | atgtgtgact | cgttaaaatc | atgaactaga | 4380 |
| acaaagggaa | aggaacaatg | ttacaatctc | aatgattaga | taggatataa | ctcgataaca | 4440 |
| aacctaacca | gcagagttag | atcaagtggt | aagtctttgc | ctttgaagac | ataggtcgag | 4500 |
| ggttcgatcc | tcactccatg | tggtcggagg | tttattggtg | aatgcatgct | tagctaccgt | 4560 |
| tcaaagtaac | tttattggtg | aatgcatgct | tagctaccgt | tcaaaatctt | caaaaagggt | 4620 |
| aattatgtct | aatatgccat | ctaagttcta | accaaccctt | caaatgttca | ttcctataat | 4680 |
| tactaaccaa | ttcttacgtt | gtcaagtaaa | taaaatgagc | attctaaccc | taatctgcac | 4740 |
| cttcatcact | ggtttgatgt | tctatgggtt | ggttaatttg | cttagccgtc | gcgctagccg | 4800 |
| tcttcctcca | ggtccaaccc | catggccaat | catcggcaac | ctaatgcacc | ttggtaaact | 4860 |
| tccacatcac | tcgctggcgg | acttggcgaa | aaagtatggt | ccgttgatac | atgtccgact | 4920 |
| agggtccgtt | gatgttgtgg | tggcctcgtc | tgcgtccgtt | gctgggcagt | ttttaaaggt | 4980 |
| gcatgatgcg | aattttgcca | acaggccacc | aaattctgga | gctaaacata | tggcgtataa | 5040 |
| ttatcatgat | atggtgtttg | cgccgtatgg | tccaaggtgg | cgaatgcttc | gaaagatgtg | 5100 |
| ctccatgcat | ctgttttctg | ccaaagcact | cactgatttt | cgtcaagttc | gacaggtttt | 5160 |
| gtactttcac | tttcgtcata | tatataggga | gattagtacg | agaacgaaca | cttttaaaat | 5220 |
| cactttttaa | taatcaaaat | atctttttt  | ttttaaacaa | aatcatggaa | tcttattcaa | 5280 |
| ataacttttc | taaccttcta | aattttttt  | aatttttaa  | tttttttt   | acttacagtg | 5340 |
| attaagataa | tcacataaaa | tatatagata | atcacatgaa | atttttgtg  | attatttagt | 5400 |
| tcaaatacat | tattatcgat | atatttttg  | tgattatctt | aaccaccgta | aaaaaattc  | 5460 |
| aaaaataaaa | taaaatctga | gaaggttaaa | aaagttatat | aaataagatt | ttccgatttt | 5520 |
| gttttcaaca | ataaaataaa | atttcagaac | gtaataaaaa | ttgattttt  | gttaacgaga | 5580 |
| gtttgtaaca | atagacggtc | aacggaaaat | gtgtattatc | tggtggtatc | accatcggat | 5640 |
| tatgccaagc | atgcataaaa | aaacaaaatc | gtaactacag | gaggaggtaa | cgatactcac | 5700 |
| gcgcgttttg | gccaggactg | gacaatcggc | agtgaaacta | gatcaacaac | ttaacgtgtg | 5760 |
| cttcgcaaac | acattatccc | gaatgatgtt | agacaggaga | gtatttggag | acggtgatcc | 5820 |
| aaaggcggac | gactacaagg | atatggtggt | tgagttgatg | actttggccg | gacaattcaa | 5880 |
| catcggtgac | tacattcctt | ggcttgactt | gcttgaccta | caaggcattg | tcaaaaggat | 5940 |
| gaagaaagtt | cattctcaat | tcgattcgtt | ccttgacacc | atcattgatg | aacatactat | 6000 |
| tggcacgggc | cgtcatgttg | acatgttaag | cacaatgatt | tcactcaaag | ataatgccga | 6060 |
| tggagaggga | gggaagcttt | cgttcatcga | gatcaaagct | cttctactgg | tgcgcgtaat | 6120 |
| acatagtagt | caacttttt  | tttttctgg  | taatgactct | ttgagcaggt | aaaatgtccc | 6180 |
| caacaggaat | caaacttggt | acctatcatt | tttgggaaaa | attttaaaag | tactagcttt | 6240 |
| ttcaaaaaga | ttatgaaaag | tatctgtttt | tctggacgat | tgttaaatct | accccaaacg | 6300 |
| catgtcttat | atgcgttccc | ttaatcaaac | gttgagggtg | cgcatatggt | acatgcatac | 6360 |
| cctccaaagg | agttcccatg | cacgttgagg | gtgcacatat | acacatgcgc | accctcttcg | 6420 |
| tggtttgcca | ccaaggcaaa | tcctggagga | cagtcaacct | ttttgatata | agttcagatc | 6480 |
| taactctagg | ctaatactgt | tgatgtttca | gaacttgttc | tcagcgggaa | cggacacgtc | 6540 |
| atctagtacc | gtggaatggg | gaatagegga | actcattcgc | cacccacage | taatgaaaca | 6600 |
| -          |            |            | 5          | 5          | -          |      |

109

### -continued

| agcgcaagaa | gaaatggaca | ttgtagttgg | aaaaaaccgg | cttgtaacag | aaatggacat | 6660 |
|------------|------------|------------|------------|------------|------------|------|
| aagccaacta | acattccttc | aagccattgt | gaaagaaacg | tttaggctac | accccgcgac | 6720 |
| gccactttcc | ctgccaagga | ttgcatcaga | aagctgtgag | gtcaaggggt | atcatgttcc | 6780 |
| taagggatcg | atactctttg | ttaacgtgtg | ggccattgct | cgacaatcag | aattgtggac | 6840 |
| cgacccactt | gaatttcggc | ctggtcgttt | cctaatccca | ggagaaaaac | ctaatgttga | 6900 |
| agtgaagcca | aatgatttcg | aaattgtacc | attcggggga | ggacgaagga | tttgtgcagg | 6960 |
| tatgagcctc | ggattgagaa | tggtcaattt | gcttattgca | acattggttc | aagcctttga | 7020 |
| ttgggaattg | gctaatgggt | tagagccaga | aaagcttaac | atggaagaag | tgtttgggat | 7080 |
| tagcetteaa | agggttcaac | ccttgttggt | gcacccgagg | ccaaggttag | cccgtcacgt | 7140 |
| atacggaacg | ggttaaggaa | ataaactgtc | tgtttgtaag | atgaatctgt | ttgaatttat | 7200 |
| gtattaaata | gttatgctaa | gaactattt  | tacaaataaa | agtatattgg | tttgattgtt | 7260 |
| ctcgcttagc | ctttgctaaa | tcttagatag | atgagttgta | taacacatca | tcattaactc | 7320 |
| acatcacgtg | gtaacgattt | gtttttgagt | taaaatttt  | aaagaaagga | aagaaagaga | 7380 |
| aagtaaatat | aaaaaattt  | gtgttcccga | gaagttttt  | acgaaggaag | aggggagaaa | 7440 |
| gagagagaat | tttagagaaa | ttttgagtat | tttacaacaa | aaatcatcct | ctcatttttg | 7500 |
| ggatgatttg | gaggatcttt | tttctttctt | ttccttcgtc | cacttcacct | ccctttcttt | 7560 |
| ccaaaaaaat | ctcggaaaca | tagcgtaatg | ataaacaaaa | accaataaaa | atgagcagga | 7620 |
| gcaaacccta | gaaggacgaa | atcttgaaaa | tttattctaa | gatttttaaa | aaaaacttgg | 7680 |
| cagttggaaa | gggcggcgga | tatcagtagg | tagttgtgtc | acaacgacca | gggcggtgtg | 7740 |
| tcaagaaacc | ttgttttgag | ttgtgtctat | atttaaggct | ccaaaatctc | cctcgacttc | 7800 |
| aaagtgtaca | tagaactgcg | ttcaaagtga | ccgtaggact | gcttgtgagt | aggagataac | 7860 |
| tacaaaatta | aacttagtta | ggaattagta | tgtccgacca | aaagattgtg | atggtttaga | 7920 |
| attaagagac | aattacatat | attttcaatt | aaaactctat | aataaaatat | ttttcaatca | 7980 |
| aattttaaaa | taatatatat | atatttattt | taaaagtata | taataatata | tttatccaat | 8040 |
| caaattttaa | aataacatat | atatatatat | tttaaaattt | taaattatat | atttatccat | 8100 |
| ttctatcaat | tataataaaa | aaataactat | tatacctttt | ttgataaaac | aaaataaaca | 8160 |
| tatttaacaa | attttattat | ataaacttca | ataaaatata | aaatatatga | aataaacaga | 8220 |
| aatcgtgtta | tcgcttactt | gaatcaaata | ataagttgca | gaagataaaa | aaaaattag  | 8280 |
| actttgaaaa | ataaaataaa | aaataatata | tggttataaa | tactataatt | tatcaaaaat | 8340 |
| actatattt  | atcaaaatcc | aaaacaaata | gttttttgt  | tatgaaaaaa | aaaatctcta | 8400 |
| cacaaacaca | ttaaaatttt | ataatttaat | ttcaaatctc | aattaattat | ttgagaagat | 8460 |
| tcgttcaata | tatttgttaa | taaagtggac | aataagaatt | tatttgcttc | aaataaacga | 8520 |
| caacatgatt | tttgttaatt | tcatatattt | tg         |            |            | 8552 |
|            |            |            |            |            |            |      |

<210> SEQ ID NO 80 <211> LENGTH: 5638 <212> TYPE: DNA <213> ORGANISM: Cineraria <220> FEATURE: <221> NAME/KEY: misc\_feature <223> OTHER INFORMATION: PvuI-EcoRV fragment from gCi01-pBluestar <220> FEATURE: <221> NAME/KEY: exon <222> LOCATION: (2652)..(3092) <220> FEATURE:

111

#### -continued

<221> NAME/KEY: exon <222> LOCATION: (3618)..(4046) <220> FEATURE: <221> NAME/KEY: exon <222> LOCATION: (4449)..(5090) <400> SEQUENCE: 80 cgacatcacc attgtgtcaa tggtgtttcg gatatttatg ggacgaccca acaaaacatg 60 ctttctaaca caaccctccc tcatcccgag atttatacct ggtcaacggc tcgaccattg 120 tccaaggcat aagttatgga aaagaaaaaa taaaaaacat atagaaagta aacttttaaa 180 acttgtgtaa gcccaaattg tattactcaa gatcggcagg cgatttacga cctcagttac 240 gtgtttaagc gtttgatatg taaactttta cgagcgaaaa atgatcaaga aaatttagtc 300 360 attatcagtt tgtgtttcta aatccttaac agaatcaata tgcattcgac ttacagtgat 420 taaqacqatc ataqaaqqqa ttatcqtcac aaaatttaqt caqatactta tqaactqaca 480 aaatcottta cagaatcaat atgoattaga ottacagtgo aaacatatac googagagot 540 aaaagcgacg gtgataagag tagaatcgta atttcacaga atcagcagac ttcttataaa 600 gaaaacacaa ctagaaatca agttcacaaa ctacttcatt tactaatctt tgatgttcaa 660 caagtcgttg gcgagggcat gggtacttcg gtaatttcac acaactcatg aatgttttta 720 tgaagaaaac acttccaagt ataaaccaag ttctcaaact aatatgttca ctaatcaatg 780 acgttcgagt aaatcacacc tgaatacaat gagcctagat tttacctggc aattcgaatt 840 ttcaaaccat tgaactaatc ttttgcaata attctcttgc accaagatca tcgggtgaac 900 gagaggtcca ctcctggtaa tggcgaagac taccagtgaa atctgtaaaa agcccgtcaa 960 ggcgtcaact cccattgtgt ctatccagta attgtattcc atatatgggc cttcacagaa 1020 tttgaaatgc aagaactggt tttcattgcg aaatgtgtaa gggtgcagct gcaagtatta 1080 gtaaaagacg ttcggtttga cttttgaggt caacacatag aaaaattcta ctccaatttt 1140 actcgaagta atgtgatttt caggaaagat tacaaagaaa ctcgtaacat attaaatatg 1200 ggacaatatt agtattaaga acttacccag attcaaatca gtttgaaaat ttgaaagtta 1260 tatataaaga taaaatttga cctctcaagg tcaaacagag aaatccaact ccgtttatac 1320 acaaccttaa cgaaatttta agaaaatatc aacgattacc aaaacagttc taacatgtta 1380 acacgtggaa acgattcgtc tcttgagact aagtaaatta tatttacatt aatgtgtgat 1440 tctgaaaaaa ggtcgtcaaa atatctatta aatctaatgt acctgtagat tatgggcgtg 1500 agetegggtt ttgagattgg gaggegtttg aatgtagtta tettteacag gaacaacagt 1560 gtctttccat ggaccaatac cgacaacata ttctttgata tatttgaagt aacgatctga 1620 agtgatttct gcatacgtct gcaaatgaaa aagaaatcag attataaaca tccattgcaa 1680 actateettq cateqtqttt ggatqtteqt tttaageqaq tattttatqq aataqqqaqa 1740 atcagacaat tagttgtaat aaaacatgat ctttaattgt gctactagtt taagttataa 1800 tgataataga aaacatttag tcttcggaaa attatataaa ttaccaaaaa tgggtttaac 1860 tgtttcaaac caaaagtggc aagatgtcag gtcggatgga ttgggtaacg ggtcaaaatg 1920 ggttggactg aaacatgttc aaacatagcg cgtaggccgt agagattaca aaaattctcc 1980 gttccaaata aggttaacag atatgactat gctgactttt taagtgtcaa atgcgattct 2040 cttttccggt atgcataaaa aactgacgac ggacattaca ctatataaaa atttagaagg 2100 ttataataaa ccaagaaaat ataattgtat taaattgtgt gagttatatg aattacatag 2160

## -continued

| aaccttttat | atatggttga                           | attaccttgc  | tgaacaagaa  | acctaaacct a                          | attagaaatg | 2220 |
|------------|--------------------------------------|-------------|-------------|---------------------------------------|------------|------|
| tctcaaaaat | cctaagcttc                           | aggaatacct  | tcccggcctt  | agcgacgagg a                          | aagatatgct | 2280 |
| agagtgtatg | tgtgactcgt                           | taaaatcatg  | aactagaaca  | aagggaaagg a                          | aacaatgtta | 2340 |
| caatctcaat | gattagatag                           | gatataactc  | gataacaaac  | ctaaccagca g                          | gagttagatc | 2400 |
| aagtggtaag | tctttgcctt                           | tgaagacata  | ggtcgagggt  | tcgatcctca d                          | ctccatgtgg | 2460 |
| tcggaggttt | attggtgaat                           | gcatgcttag  | ctaccgttca  | aagtaacttt a                          | attggtgaat | 2520 |
| gcatgettag | ctaccgttca                           | aaatcttcaa  | aaagggtaat  | tatgtctaat a                          | atgccatcta | 2580 |
| agttctaacc | aacccttcaa                           | atgttcattc  | ctataattac  | taaccaattc t                          | tacgttgtc  | 2640 |
| aagtaaataa | a atg agc a<br>Met Ser I<br>1        |             |             | c acc ttc atc<br>s Thr Phe Ile<br>10  |            | 2690 |
|            | c tat ggg tt<br>e Tyr Gly Le         |             |             |                                       |            | 2738 |
|            | a ggt cca ac<br>o Gly Pro Th<br>35   |             |             |                                       | -          | 2786 |
|            | a ctt cca ca<br>s Leu Pro Hi<br>50   |             |             |                                       |            | 2834 |
|            | g ata cat gt<br>u Ile His Va<br>65   | l Arg Leu G |             |                                       |            | 2882 |
|            | g tee gtt ge<br>a Ser Val Al         |             |             |                                       |            | 2930 |
| -          | c agg cca cc<br>n Arg Pro Pr         | -           |             |                                       |            | 2978 |
|            | t atg gtg tt<br>p Met Val Ph<br>11   | e Ala Pro I |             |                                       |            | 3026 |
|            | g tgc tcc at<br>t Cys Ser Me<br>130  |             |             |                                       |            | 3074 |
|            | a gtt cga ca<br>n Val Arg Gl:<br>145 |             | t ttcacttto | cg tcatatatat                         | 5          | 3122 |
| agggagatta | gtacgagaac                           | gaacactttt  | aaaatcactt  | tttaataatc a                          | aaaatatctt | 3182 |
| ttttttta   | aacaaaatca                           | tggaatetta  | ttcaaataac  | ttttctaacc t                          | tctaaattt  | 3242 |
| tttttaattt | tttaattttt                           | ttttactta   | cagtgattaa  | gataatcaca t                          | caaaatatat | 3302 |
| agataatcac | atgaaatttt                           | tgtgattat   | ttagttcaaa  | tacattatta t                          | cgatatatt  | 3362 |
| ttttgtgatt | atcttaacca                           | ccgtaaaaaa  | aattcaaaaa  | taaaataaaa t                          | cctgagaagg | 3422 |
| ttaaaaaagt | tatataaata                           | agattttccg  | attttgtttt  | caacaataaa a                          | ataaaatttc | 3482 |
| agaacgtaat | aaaaattgat                           | ttttgttaa   | cgagagtttg  | taacaataga d                          | cggtcaacgg | 3542 |
| aaaatgtgta | ttatctggtg                           | gtatcaccat  | cggattatgc  | caagcatgca t                          | caaaaaaaca | 3602 |
| aaatcgtaac | tacag gag g<br>Glu G                 |             |             | g cgc gtt ttg<br>r Arg Val Leu<br>155 |            | 3653 |
| act gqa ca | a tog goa gt                         | g aaa cta c | jat caa caa | ctt aac qtq                           | tgc ttc    | 3701 |

act gga caa tcg gca gtg aaa cta gat caa caa ctt aac gtg tgc ttc 3701 Thr Gly Gln Ser Ala Val Lys Leu Asp Gln Gln Leu Asn Val Cys Phe

| - | 4 | _ |
|---|---|---|
| 1 | T | 5 |

| gca acc aca tta tto cc cga atg atg tta gac agg agg gta ttt gga gac<br>lao3749ggt gat cca acg gcg gac gac tac acg agg ata tg gtg gt gad (tg atg<br>lay ap pro by all haps hap ty<br>lao3797ggt gat cca acg gcg gac gac tac acg agg ata tg gtg gt gat (tg atg<br>lay ap pro by all haps hap ty<br>lao3797ggt gat cca acg gcg gac gac tac acg gg gat ata tg gtg gt gt gat (ta tc)<br>lao3797gat gac ca acg gca att cac ata (ggt gac tac att cot tg got) cac<br>lao3845gat gac ca acg gca tt gt cas at gat gga acg as and gt cat tc)<br>lao3893gat gac ca ca ggc att gt cac at at gat gga cat at at gg<br>lao3991gat gac ca ca gg cat tg to aca atc att gat gga cat at at gg<br>lao3999gad gcc gat cat gt gac atg tha gac as ta stt. tc1007210245250201190 Akg phet202190 Akg phet190 Akg<br>lao203 ggc gc dt at gt gad gg gg ag gt acg tt tog tto at cat and gat<br>lao204 ggc gcd cat gt gad ag gg ag gg ag tt tog tto at cat and gat<br>lao205 ggt gg gat dg gg gg ag gg tag ct tog tto at gag atc aa ag gat<br>lao206 ggt gg gat dg dg gg gg ag gt tog207 lao208 ggt gg cg att gt acatagtag tcaactttt209 laa209 laa200 latt gg gg gg ag gg ag gg tag gt tog200 latt gg gg gg ag ag gg tt gga at aga gg gg gg<br>laa201 lata tagacag202 gg gg gg ad gg gg agg gg agg gg acc203 gg gg gg at gg ga agg gg agg gg agg gg acc204 lata tagacag205 gg gg ad at gg ga acc205 gg gg at agg tag at taga aca206 gg gg acc206 gg gg                                                                                                            | -continued                                                                                                                                            |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Ala Asm Thr Leu Ber Arg Mei Nei Leu Asp Arg Val Phe Cily Asp       190         ggt gat oca asg geg gac gac tac asg gat atg gtg gt gag tig atg 105       3797         Bily Asp Pro Lyn Ala Asp Asp Typ Lyn Asp Met Val Val Gilu Leu Net 205       3845         art Etg gec gga caa tte asc atc ggt gac tac att oct 19g ctt gac 1920       3845         210       210       220         art Etg gec gga caa tte asc atc ggt gac tac att oct 19g ctt gac 1920       3845         210       210       220         210       210       220         210       210       220         210       210       220         210       210       220         211       210       220         212       210       220         210       210       210         210       210       210         210       210       210         211       211       211         212       220       225         210       210       211         210       212       210         211       210       210       211         212       210       210       211         211       210       211       210                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 160 165 170 175                                                                                                                                       |      |
| Siy App Pro Lyg All App App Tyr Lyg App Net Val Val Giu Leu Net<br>195       200       205         act ttg goc gga caa tto act act gt gga cat act att oct tgg ott gac<br>Thr Leu Ala Gly Gin Phe Am Ile Gly App Tyr Ile Pro Trp Leu App<br>215       3845         ttg ott gac cta caa ggc att gto aaa agg atg aag aaa gtt cat tot<br>220       3893         cta tt cg tt cg tt cott gac acc att gt gaa cat act att ggc<br>Gin Phe App Ser Phe Leu App Thr Ile Ile App Olu His Thr Ile Gly<br>250       3941         caa tto ggt cg cat gt gac act act gg tt ca to cat ag gg<br>Gin Phe App Ser Phe Leu App Thr Ile Ile App Olu His Thr Ile Gly<br>240       3941         caa gg gg cg tcat gt gac atg tt agc act act atg att ca act ag gt<br>775       200       205         acg ggc cg tat gt gac gg gg agg tt tog tto atto ggt acaa ag t<br>270       3989       3066         att co gt ggg gga gg gg agg tt cg tto att ggt acaa ag t<br>270       100       101       102         att co gt ggg gga ag gg ag gt gt tog tto att gga caa act at<br>275       200       225       1037         att co gt ggg gga ag gg ag gt gt tog ttog tto                                                                                                                                                                                                                                                                                                                                                                                       | gca aac aca tta tcc cga atg atg tta gac agg aga gta ttt gga gac<br>Ala Asn Thr Leu Ser Arg Met Met Leu Asp Arg Arg Val Phe Gly Asp<br>180 185 190     | 3749 |
| Thr Leu Ala GLY GIN Phe Aem ILe GLY Asp Tyr ILe Pro Trp Leu Asp       210         210       215       215       255       257       216       289         ttg ctt gac cta caa agg at gt as ag as gtt cat tot 225       236       235       235       235       235       235       235       235       235       235       235       235       236       235       235       236       235       236       235       235       236       235       235       236       235       235       241       255       241       255       241       255       241       255       241       255       245       255       245       255       243       255       243       255       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245       245<                                                                                                                                                                                                                                                                                                                                                                                        | ggt gat cca aag gcg gac gac tac aag gat atg gtg gtt gag ttg atg<br>Gly Asp Pro Lys Ala Asp Asp Tyr Lys Asp Met Val Val Glu Leu Met<br>195 200 205     | 3797 |
| Leu Leu ArgLeu Gln GI11 E Val Lys Arg MeiLys Lys Val His Ser<br>235240225236244 att 41 ggc39412402452452503141240245246250314124024624625031412402462462503141240246246250314124024624625031412402462651165272402462651165272402462651161122502702702702502754037275270285ct t a ct g g tg gg gg ag gg ag tag t t cg tt c at c gag at c aaa get<br>27540362752774086275270285ct t a ct g g tg tg gg gg tag tag ta catactttt ttttttttt40862752754086285286ct t at ct g at gt tag at catactag at caactttg tactactat4146ttttgggaaa aattttaaaa gtactagctt tttcaaaag at atageaga gt act dt 2266cgttgagggg gg gg ag at cataget a cactcaag gad agt cc at ag gaa at dt 326ggtgcacata tacacatgcg caccctct g tggtttgcc accaagcaa atcctggagg436acagtcaac1417295295295295295295295295295295295295295295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | act ttg gcc gga caa ttc aac atc ggt gac tac att cct tgg ctt gac<br>Thr Leu Ala Gly Gln Phe Asn Ile Gly Asp Tyr Ile Pro Trp Leu Asp<br>210 215 220     | 3845 |
| Ghn Phe Åep Ser Phe Leu Åep Thr Ile IIE Åep Ölu His Thr Ile Öly<br>2503989<br>2552402502502503989acq ggc cgt cat gtt gac atg tta agc aca atg att tca ctc aaa gat<br>Thr Gly Arg His Val Åep Met Leu Ser Thr Met Ile Ser Leu Lye Åep<br>2653989aat goc gat gga gga gga gga gga tt tc gt tc atc gag atc aaa ggt<br>Aen Åa Åep Gly Glu Gly Dye Leu Ser Phe Ile Glu Ile Dye Åla<br>2754037aat goc gat gga gga gga gga tacaatgag tcaactttt ttttttttctg<br>Leu Leu Leu<br>29040864037gtaatgact tttgagcagg taaaatgtoc ccaacaggaa tcaaacttgg tacctatcat<br>2504146ttttgggaaa aatttaaaa gtactagtot tttcaaaaag attatgaaaa gtatcggtt<br>2654206ttttgggaaa aatttaaaa gtactagota coctocaaag gaqtoccat gcacgttgag<br>2654326ggtgcacata tacacatgog caccottct gtggtttgc accaaggcaa atcctggag<br>Aen Leu Phe Ser Åla Gly Thr Åep Thr Ser Ser Ser Thr Val Glu<br>2054446ag aac ttg ttc tca gcg gga acg gac acg tca tca tag aac cag gcg<br>Aen Leu Ile Arg His Pro Gln Leu Met Lys Glu Thr<br>3154541Thr Gly Ile Åla Glu Lue Ile Arg His Pro Gln Leu Met Lys Glu Thr<br>310330ttg gg ca ta ag ca at ca tc cd cca acg ca at ga aca aca<br>3304589Gin Glu Glu Wet Asp Ile Val Val Gju Jye Aen Arg Leu Val Thr Glu<br>32546373403453504685350360365351350355352356356353350365354350355355360365356355361350355350355350356 </td <td>ttg ctt gac cta caa ggc att gtc aaa agg atg aag aaa gtt cat tct<br/>Leu Leu Asp Leu Gln Gly Ile Val Lys Arg Met Lys Lys Val His Ser<br/>225 230 235</td> <td>3893</td>                                              | ttg ctt gac cta caa ggc att gtc aaa agg atg aag aaa gtt cat tct<br>Leu Leu Asp Leu Gln Gly Ile Val Lys Arg Met Lys Lys Val His Ser<br>225 230 235     | 3893 |
| Thr OIY Arg His Val Åsp Met Leu ser Thr Met Ile Ser Leu Lys Åsp         260       260         261       260         265       270         266       265         270       280         280       280         280       280         280       285         280       285         280       285         280       285         280       285         280       285         280       285         290       280         gtaatgactc tttgagcogtaa tacatagtag tcaacttttt ttttttttg       4086         290       gtaatgactc tttgagcagg tacatagtag tcaacgtctt ttcaaaaag attatgaaaa gtactgttt       4206         tttgggaaa aattttaaaa gtactagctt tttcaaaaag attatgaaaa gtactgttt       4206         tttgggagg gegcatatgg tacatgcata ccctcaaag gagtcccat gcacgttgag       4326         ggtgcacata tacacatgcg caccctcttc gtggtttgc accaagcaa atcctgagag       4386         acagtcaacc tttttgatat aagttcagat ctaactctag gctaatactg ttgatgttt       4446         ag ac ttg ttc tca gcg gga acg gac acg tca tt agt acc gtg ga       451         Trp Gly Ile Ala Glu Leu Ile Arg His Pro Gln Leu Met Lys Glu Ala       458         Gln Glu Glu Met Asp Ile Val Val Gly Lys Asn Arg Leu Val Thr Glu       325                                                                                                                                                                                                                                                                                                                                         | caa ttc gat tcg ttc ctt gac acc atc att gat gaa cat act att ggcGln Phe Asp Ser Phe Leu Asp Thr Ile Ile Asp Glu His Thr Ile Gly240245250255            | 3941 |
| Ann Ala Asp Gly Glu Gly Gly Lys Leu Ser Phe Ile Glu Ile Lys Ala<br>275280285ctt cta ctg gtgegegtaa tacatagtag tcaactttt tttttttctg4086Leu Leu<br>290290gtaatgactc tttgagcagg taaaatgtcc ccaacaggaa tcaaacttgg tacctatcat4146ttttgggaaa aattttaaaa gtactagctt tttcaaaaag attatggataa gtactggtt4206ttttgggaag ttgttaaatc taccccaaac gcatgtctta tatgcgttcc cttaatcaaa4266cgttgagggt gcgcatatgg tacatgcata ccctccaaag gagttcccat gcacgttgag4326ggtgcacata tacacatgcg caccetette gtggtttgce accaaggcaa atcetggagg4446aa gaac ttg ttc tca gcg gg a acg gac acg tca tct agt acc gtg gaa4493Asn Leu Phe Ser Ala Gly Thr Asp Thr Ser Ser Ser Thr Val Glu<br>295305tgg gga ata gcg gaa ctc att cgc cac cac ag cta atg aaa caa gcg<br>3104541Trp Gly Ile Ala Glu Leu 1le Arg Hie Pro Gln Leu Met Lys Gln Ala<br>310315caa gaa gaa atg gac att gta gt gga aaa acc gg ct tg ta aca gaa<br>3304637atg gac ata agc caa tta aca ttc ctt ca gc ca atg atg aga acg<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | acg ggc cgt cat gtt gac atg tta agc aca atg att tca ctc aaa gat<br>Thr Gly Arg His Val Asp Met Leu Ser Thr Met Ile Ser Leu Lys Asp<br>260 265 270     | 3989 |
| Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | aat goo gat gga gag gga ggg aag ott tog tto ato gag ato aaa got<br>Asn Ala Asp Gly Glu Gly Gly Lys Leu Ser Phe Ile Glu Ile Lys Ala<br>275 280 285     | 4037 |
| ttttgggaaa aatttaaaa gtactagctt tttcaaaaag attatgaaaa gtactgttt       4206         ttttgggaaa aatttaaaa gtactagctt tttcaaaaag attatgaaaa gtactgttt       4206         cgttgagggt gcgcatatgg tacatgcata coctocaaag gagttoccat gcacgttgag       4326         ggtgcacata tacacatgcg caccctttc gtggtttgcc accaaggcaa atcctggagg       4386         acagtcaacc ttttgatat aagttocgat ctaactotag gcatatactg ttgatgtttc       4446         ag aac ttg ttc tca gcg gga acg gac acg tca tct agt acc gtg gaa       4493         Asn Leu Phe Ser Ala Gly Thr Amp Thr Ser Ser Ser Thr Val Glu       295         295       300       305         tgg gga ata gcg gaa ct att cgc cac cca cag ta atg aaa caa gcg       4541         310       315       320         caa gaa gaa atg gcg gaa atg gat ggt gga aaa acc gg ctt gta aca gaa       4589         Gin Glu Glu Met Amp Ile Val Val Gly Lyn Am Arg Leu Val Thr Glu       325         atg gac ata agc cag ca ca cta ct cc ctg cca agg at g gaa acg       4637         340       345       350         ttt agg cta cac ccc cg ga gg cc at tt cc ctg cca agg ta t gca tca       4685         aga agc tgt gag gtc aag ggg ta cat gtc ct agg gga tcg at ctc       4733         370       375       380       385         stg gaa ctg gg gc at gg gg ta cat gtc ct agg gga tcg at acc       4733         gg gac ata agc gg gg ta cat gtc ct ct ct agg gga tc                                                                                                                                       | ctt cta ctg gtgcgcgtaa tacatagtag tcaacttttt ttttttctg<br>Leu Leu Leu<br>290                                                                          | 4086 |
| ttctggacga ttgttaaatc taccccaaac gcatgtctta tatgcgttcc cttaatcaaa4266cgttgagggt gcgcatatgg tacatgcata ccctccaaag gagttcccat gcacgttgag4326ggtgcacata tacacatgcg caccctcttc gtggtttgcc accaaggcaa atcctggagg4386acagtcaacc tttttgatat aagttcagat ctaactctag gctaatactg ttgatgttc4446ag aac ttg ttc tca gcg gga acg gac acg tca tct agt acc gtg gaa4493Asn Leu Phe Ser Ala Gly Thr Asp Thr Ser Ser Ser Thr Val Glu<br>295403gg gga ata gcg gaa ctc att cgc cac cac agt at atg aaa caa gcg<br>3104541Trp Gly Ile Ala Glu Leu Ile Arg His Pro Gln Leu Met Lys Gln Ala<br>310315caa gaa gaa atg gac att gta gtt gga aaa acc gg ctt gta aca gaa<br>3204637atg gac att agc caa cta aca ttc ctt caa gcc att gtg aaa gga acg<br>3404637atg gac ata agc caa cta aca ttc ctt cct gc cca agg att gca tca<br>3404685ttt agg cta cac ccc gcg acg cca ctt tcc ctg cca agg att gca tca<br>3654733ctt agg ctg gag gtc agg ggg tt cat gtt ct att gra gat gat cc<br>3554733gaa agc tgt gag gtc aag ggg tt cc ga caa tca gaa ttg ga cc gac<br>3754733gu Ser Cys Glu Val Lys Gly Tyr His Val Pro Lys Gly Ser Ile Leu<br>375380att gt aac gtg tgg gcc att gct cga caa tca gaa ttg ga cc gac<br>3554781ttt gt aac gtg tgg gcc att gct cga caa tca aga attg ga cgac<br>3654781cca ctt gaa ttt cgg cct ggt cgt ttc cta atc cca gga gaa aac ct<br>3754829cca ctt gaa ttt cgg cct ggt cgt ttc cta atc cca gga gaa aac ct<br>3954829cca ctt gaa ttt ccg cct ggt cgt ttc cta atc cca gga gaa aac cct<br>3954829cca ctt gaa ttt ccgg cct ggt cgt ttc cta atc cca | gtaatgactc tttgagcagg taaaatgtcc ccaacaggaa tcaaacttgg tacctatcat                                                                                     | 4146 |
| cgttgagggt gogcatatgg tacatgcata coetecaaag gagtteccat geaegttgag 4326<br>ggtgcacata tacacatgog caccette gtggtttgce accaaggcaa ateetggagg 4386<br>acagteaace tttttgatat aagtteagat etaactetag getaataetg ttgatgttee 4446<br>ag aac ttg tte tea gog gga aeg gae aeg tea tet agt ace gtg gaa 4493<br>Asn Leu Phe Ser Ala Gly Thr Asp Thr Ser Ser Ser Thr Val Glu 295 300 305<br>tgg gga ata geg gaa ete att ege cae cea cea eag eta atg aaa eaa geg 4541<br>310 315 300 305<br>tgg gga atg gae att gta gtt gga aaa aac egg ett gta ace gaa gaa gaa atg gae att gta gtt gga aaa aac egg ett gta ace gaa 335<br>atg gae ata gge caa eta gta gtt gga aaa aac egg ett gta ace gaa gaa acg 4637<br>320 335<br>atg gae ata age caa eta aca tte ett caa gee att gta gaa gaa aeg 4637<br>340 345 350<br>ttt agg eta cae ee geg aeg ee aett tee en Pro Arg Ile Ala Ser 355<br>355 360 375 360<br>ttt agg eta gag gte ag ggg at eat gtt et et tee Pro Arg Ile Ala Ser 365<br>366 365<br>ttt gta gag gte ag gge gg gg tat eat gtt ee ag gaa teg ata ete 4733<br>Glu Ser Cys Glu Val Lys Gly Tyr His Val Pro Lys Gly Ser Ile Leu 375<br>376 378 380 395<br>ttt gtt aac gtg tgg gee att get ega caa tea gaa ttg tgg ace gae 4781<br>Phe Val Asn Val Trp Ala Ile Ala Arg Gln Ser Glu Leu Trp Thr Asp 390 395<br>ttt gaa ttt egg eet gg eet tee en Pro Gly Glu Lys Pro 400 415                                                                                                                                                                      | ttttgggaaa aattttaaaa gtactagctt tttcaaaaag attatgaaaa gtatctgttt                                                                                     | 4206 |
| ggtgcacata tacacatgcg caccetete gtggttgcacata cacaaggcaa atcetggagg       4386         acagtcaace tttttgatat aagttcagat etaactetag getaataetg ttgatgttte       4446         ag aac ttg tte tca geg gga acg gac acg tca tet agt ace gtg gaa       4493         Asn Leu Phe Ser Ala Gly Thr Asp Thr Ser Ser Ser Thr Val Glu       295         tgg gga ata geg gaa etc att ege cac cca cag eta atg aaa caa geg       4541         Trp Gly Ile Ala Glu Leu Ile Arg His Pro Gln Leu Met Lys Gln Ala       310         310       315       320         caa gaa gaa atg gac att gta gtt gga aaa aac egg ett gta aca gaa       4589         Gln Glu Glu Met Asp Ile Val Val Gly Lys Asn Arg Leu Val Thr Glu       325         320       330       335         atg gac ata age caa eta aca tte ett caa gee att gtg aaa gaa acg       4637         Met Asp Ile Ser Gln Leu Thr Phe Leu Gln Ala Ile Val Lys Glu Thr       346         355       360       365         ggt gaa t ca ege cae ett gtg et egg eca att gtg eca agg at eg at etc       4685         355       360       365         355       360       365         355       360       375         360       375       386         355       360       365         361       375       386         370       385                                                                                                                                                                                                                                                                   | ttetggaega ttgttaaate taeceeaaae geatgtetta tatgegttee ettaateaaa                                                                                     | 4266 |
| acagtcaacc tttttgatat aagttcagat ctaactctag gctaatactg ttgatgtttc 4446<br>ag aac ttg ttc tca gcg gga acg gac acg tca tct agt acc gtg gaa 4493<br>Aan Leu Phe Ser Ala Gly Thr App Thr Ser Ser Ser Thr Val Glu 295<br>tgg gga ata gcg gaa ctc att cgc cac cca cag cta atg aaa caa gcg 4541<br>Trp Gly Ile Ala Glu Leu Ile Arg His Pro Gln Leu Met Lys Gln Ala 310<br>caa gaa gaa atg gac att gta gtt gga aaa aac cgg ctt gta aca gaa 4589<br>Gln Glu Glu Met Asp Ile Val Val Gly Lys Asn Arg Leu Val Thr Glu 325<br>atg gga ata agc caa cta aca ttc ctt caa gcc att gtg aaa gaa acg 4637<br>Met Asp Ile Ser Gln Leu Thr Phe Leu Gln Ala Ile Val Lys Glu Thr 340<br>ttt agg cta cac ccc gcg acg cca ctt tcc ctg cca agg att gca tca 4685<br>Phe Arg Leu His Pro Ala Thr Pro Leu Ser Leu Pro Arg Ile Ala Ser 365<br>aga agc tgt gag gtc aag ggg tat cat gtt cct aag gga tcg ata ctc 4733<br>Glu Ser Cys Glu Val Lys Gly Tyr His Val Pro Lys Gly Ser Ile Leu 370<br>375<br>380<br>395<br>ttt gta ac gtg tgg gcc att gct cga caa tca gaa ttg tgg acc gac 4781<br>Phe Val Asn Val Trp Ala Ile Ala Arg Gln Ser Glu Leu Trp Thr Asp 390<br>395<br>400<br>462<br>4629<br>Fro Leu Glu Phe Arg Pro Gly Arg Phe Leu Ile Pro Gly Glu Lys Pro 400<br>405<br>410<br>410<br>415                                                                                                                                                                                                                                                                     | cgttgagggt gcgcatatgg tacatgcata ccctccaaag gagttcccat gcacgttgag                                                                                     | 4326 |
| ag aac ttg ttc tca gcg gga acg gac acg tca tct agt acc gtg gga<br>Asn Leu Phe Ser Ala Gly Thr Asp Thr Ser Ser Ser Thr Val Glu<br>2954493ag aga ata gcg gaa ctc att cgc cac cca cag cta atg aaa caa gcg<br>Trp Gly Ile Ala Glu Leu Ile Arg His Pro Gln Leu Met Lys Gln Ala<br>3104541Trp Gly Ile Ala Glu Leu Ile Arg His Pro Gln Leu Met Lys Gln Ala<br>3103054589caa gaa gaa atg gac att gta gtt gga aaa aac cgg ctt gta aca gaa<br>3254589Gln Glu Glu Met Asp Ile Val Val Gly Lys Asn Arg Leu Val Thr Glu<br>3253354637atg gac ata agc caa cta aca ttc ctt caa gcc att gtg aaa gga acg<br>3404637Met Asp Ile Ser Gln Leu Thr Phe Leu Gln Ala Ile Val Lys Glu Thr<br>340345340345356ttt agg cta cac ccc gcg acg cca ctt tcc ctg cca agg att gca tca<br>3654685gaa agc tgt gag gtc aag ggg tat cat gtt cct aag gga tcg ata ctc<br>3654733gaa agc tgt gag gtc agg gcc att gct cga caa tca gaa ttg tgg acc gac<br>3754731gaa agc tgt gag gcc att gct cga caa tca gaa ttg tgg acc gac<br>3654781gaa agc tgt gtg gcc att gct cga caa tca gaa ttg tgg acc gac<br>3754781gaa agc tgt gag gcc att gct cga caa tca gaa ttg tgg acc gac<br>3904781agg aa agc tgt gag tcg gcc gtt gct tcc ta atc cca gga gaa acg<br>3904829agg aa agc tgt gaa ttcg cct ggt cgt ttc cta atc cca gga gaa aaa cct<br>3904829acc act ta gaa ttt cgg cct ggt cgt ttc cta atc cca gga gaa aaa cct<br>3954829acc act ta gaa ttt cgg cct ggt cgt ttc cta atc cca gga gaa aaa cct<br>4054829                                                                           | ggtgcacata tacacatgcg caccetette gtggtttgee accaaggeaa ateetggagg                                                                                     |      |
| TrpGlyIleAlaGluLeuIleArgHisProGlnLeuMetLysGlnAla310GluGluGluGluAstGlaGltGltGlaAstAstGlaGlaAstGlaGlaAstGlaGlaAstGlaAstGlaGlaGlaGlaAstGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGlaGla </td <td>ag aac ttg ttc tca gcg gga acg gac acg tca tct agt acc gtg gaa<br/>Asn Leu Phe Ser Ala Gly Thr Asp Thr Ser Ser Ser Thr Val Glu</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ag aac ttg ttc tca gcg gga acg gac acg tca tct agt acc gtg gaa<br>Asn Leu Phe Ser Ala Gly Thr Asp Thr Ser Ser Ser Thr Val Glu                         |      |
| GluGluMetAspIleValValGlyJysAsnArgLeuValMaGluatggacataagccaacaacaaacattccaagccattgtgaaagaaacaacg4637MetAspIleSerGlnLeuThrttccaagccattgtgaaagaaacaacg4637MetAspIleSerGlnLeuThrttccaagccattgtgLysGluThr4637tttaggctacaccccgcgacgccattctccgggattgdaLysGluThr355LeuHisProAlaThrProLeuSerLeuProArgIleAlaSer4685gaaagctfggaggtcaaggggtattccggcaaaggatttcafdcgluSerGluHisProLysGluSerIleAlaSer4733gluSerCluValProLysGluLeuThrAlaSer4781gluAssValProSerGluLeuThrProHisSer4781ProValAssValProGluSerGluLysProHis400 <t< td=""><td>tgg gga ata gcg gaa ctc att cgc cac cca cag cta atg aaa caa gcg<br/>Trp Gly Ile Ala Glu Leu Ile Arg His Pro Gln Leu Met Lys Gln Ala<br/>310 315 320</td><td>4541</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tgg gga ata gcg gaa ctc att cgc cac cca cag cta atg aaa caa gcg<br>Trp Gly Ile Ala Glu Leu Ile Arg His Pro Gln Leu Met Lys Gln Ala<br>310 315 320     | 4541 |
| Met       Asp       Ile       Ser       Gln       Leu       Thr       Phe       Leu       Gln       Ala       Ile       Val       Lys       Glu       Thr         1tt       agg       cta       cac       ccc       gcg       acg       cca       ctt       tcc       ctg       ca       agg       att       gca       tca       4685         Phe       Arg       Leu       His       Pro       Ala       Thr       Pro       Leu       Ser       Leu       Pro       Arg       Ile       Ala       Ser       365       4685         gaa       agc       tgt       gag       gtc       aag       ggg       ta       cat       gtt       cct       aag       gga       tcg       4733         Glu       Ser       Cys       Glu       Val       Lys       Gly       Tyr       His       Val       Pro       Lys       Gly       Ser       1le       Leu       385       4781         Sis       375       380       380       385       4781       385       400       4829         Phe       Val       Asn       Val       Trp       Ala       Arg       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | caa gaa gaa atg gac att gta gtt gga aaa aac cgg ctt gta aca gaa<br>Gln Glu Glu Met Asp Ile Val Val Gly Lys Asn Arg Leu Val Thr Glu<br>325 330 335     | 4589 |
| Phe       Arg       Leu       His       Pro       Ala       Thr       Pro       Leu       Pro       Arg       Ile       Ala       Ser         355       360       360       365       365       4733       4733         Glu       Ser       Cys       Glu       Val       Lys       Gly       Tyr       His       Val       Pro       Lys       Gly       Ser       Ile       Leu       385         270       375       375       380       380       385       4781         370       375       380       380       400       4781         ttt       gtt       acc       gtg       gcc       att       gcc       gaa       ttg       4781         Phe       Val       Asn       Val       Trp       Ala       Arg       Gln       Ser       Glu       Leu       Trp       Ala       Arg       Gln       Ser       Glu       Leu       Trp       Ala       Arg       Gln       Ser       Glu       Leu       Trp       Ala       Arg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | atg gac ata agc caa cta aca ttc ctt caa gcc att gtg aaa gaa acg<br>Met Asp Ile Ser Gln Leu Thr Phe Leu Gln Ala Ile Val Lys Glu Thr<br>340 345 350     | 4637 |
| Glu Ser Cys Glu Val Lys Gly Tyr His Val Pro Lys Gly Ser Ile Leu         370       375       380       385         ttt gtt aac gtg tgg gcc att gct cga caa tca gaa ttg tgg acc gac       4781         Phe Val Asn Val Trp Ala Ile Ala Arg Gln Ser Glu Leu Trp Thr Asp       390       395       400         cca ctt gaa ttt cgg cct ggt cgt ttc cta atc cca gga gaa aaa cct       4829         Pro Leu Glu Phe Arg Pro Gly Arg Phe Leu Ile Pro Gly Glu Lys Pro       405       410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ttt agg cta cac ccc gcg acg cca ctt tcc ctg cca agg att gca tca<br>Phe Arg Leu His Pro Ala Thr Pro Leu Ser Leu Pro Arg Ile Ala Ser<br>355 360 365     | 4685 |
| Phe Val Asn Val Trp Ala Ile Ala Arg Gln Ser Glu Leu Trp Thr Asp<br>390 395 400<br>cca ctt gaa ttt cgg cct ggt cgt ttc cta atc cca gga gaa aaa cct 4829<br>Pro Leu Glu Phe Arg Pro Gly Arg Phe Leu Ile Pro Gly Glu Lys Pro<br>405 410 415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gaa agc tgt gag gtc aag ggg tat cat gtt cct aag gga tcg ata ctc<br>Glu Ser Cys Glu Val Lys Gly Tyr His Val Pro Lys Gly Ser Ile Leu<br>370 375 380 385 | 4733 |
| Pro Leu Glu Phe Arg Pro Gly Arg Phe Leu Ile Pro Gly Glu Lys Pro<br>405 410 415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ttt gtt aac gtg tgg gcc att gct cga caa tca gaa ttg tgg acc gac<br>Phe Val Asn Val Trp Ala Ile Ala Arg Gln Ser Glu Leu Trp Thr Asp<br>390 395 400     | 4781 |
| aat gtt gaa gtg aag cca aat gat ttc gaa att gta cca ttc ggg gga 4877                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cca ctt gaa ttt cgg cct ggt cgt ttc cta atc cca gga gaa aaa cct<br>Pro Leu Glu Phe Arg Pro Gly Arg Phe Leu Ile Pro Gly Glu Lys Pro<br>405 410 415     | 4829 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | aat gtt gaa gtg aag cca aat gat ttc gaa att gta cca ttc ggg gga                                                                                       | 4877 |

| -continued |  |
|------------|--|

| -concinded                                                                                                                                                                          |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Asn Val Glu Val Lys Pro Asn Asp Phe Glu Ile Val Pro Phe Gly Gly<br>420 425 430                                                                                                      |      |
| gga cga agg att tgt gca ggt atg agc ctc gga ttg aga atg gtc aat<br>Gly Arg Arg Ile Cys Ala Gly Met Ser Leu Gly Leu Arg Met Val Asn<br>435 440 445                                   | 4925 |
| ttg ctt att gca aca ttg gtt caa gcc ttt gat tgg gaa ttg gct aat<br>Leu Leu Ile Ala Thr Leu Val Gln Ala Phe Asp Trp Glu Leu Ala Asn<br>450 455 460 465                               | 4973 |
| ggg tta gag cca gaa aag ctt aac atg gaa gaa gtg ttt ggg att agc<br>Gly Leu Glu Pro Glu Lys Leu Asn Met Glu Glu Val Phe Gly Ile Ser<br>470 475 480                                   | 5021 |
| ctt caa agg gtt caa ccc ttg ttg gtg cac ccg agg cca agg tta gcc<br>Leu Gln Arg Val Gln Pro Leu Leu Val His Pro Arg Pro Arg Leu Ala<br>485 490 495                                   | 5069 |
| cgt cac gta tac gga acg ggt taaggaaata aactgtctgt ttgtaagatg<br>Arg His Val Tyr Gly Thr Gly<br>500                                                                                  | 5120 |
| aatctgtttg aatttatgta ttaaatagtt atgctaagaa ctatttttac aaataaaagt                                                                                                                   | 5180 |
| atattggttt gattgttctc gcttagcctt tgctaaatct tagatagatg agttgtataa                                                                                                                   | 5240 |
| cacatcatca ttaactcaca tcacgtggta acgatttgtt tttgagttaa aatttttaaa                                                                                                                   | 5300 |
| gaaaggaaag aaagagaaag taaatataaa aaaatttgtg ttcccgagaa gttttttacg                                                                                                                   | 5360 |
| aaggaagagg ggagaaagag agagaatttt agagaaattt tgagtatttt acaacaaaaa                                                                                                                   | 5420 |
| tcatcctctc atttttggga tgatttggag gatctttttt ctttcttttc cttcgtccac                                                                                                                   | 5480 |
| ttcacctccc tttctttcca aaaaaatctc ggaaacatag cgtaatgata aacaaaaacc                                                                                                                   | 5540 |
| aataaaaatg agcaggagca aaccctagaa ggacgaaatc ttgaaaattt attctaagat                                                                                                                   | 5600 |
| ttttaaaaaa aacttggcag ttggaaaggg cggcggat                                                                                                                                           | 5638 |
| <210> SEQ ID NO 81<br><211> LENGTH: 20<br><212> TYPE: DNA<br><213> ORGANISM: Artificial<br><220> FEATURE:<br><223> OTHER INFORMATION: forward primer Ci5a18F1                       |      |
| <400> SEQUENCE: 81                                                                                                                                                                  |      |
| catctgtttt ctgccaaagc                                                                                                                                                               | 20   |
| <210> SEQ ID NO 82<br><211> LENGTH: 19<br><212> TYPE: DNA<br><213> ORGANISM: Artificial<br><220> FEATURE:<br><223> OTHER INFORMATION: reverse primer Ci5al8R1<br><400> SEQUENCE: 82 |      |
| ggattaggaa acgaccagg                                                                                                                                                                | 19   |
| <210> SEQ ID NO 83<br><211> LENGTH: 53<br><212> TYPE: DNA<br><213> ORGANISM: Artificial<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer HANS-F3Hpro500-Fd                      |      |
| <400> SEQUENCE: 83                                                                                                                                                                  |      |
| ccaagettgg egegeegegg eegeatttaa attaetgtte gaacetacaa agg                                                                                                                          | 53   |

| <210> SEQ ID NO 84<br><211> LENGTH: 39<br><212> TYPE: DNA                                                                                                                                                                                                                                                                                                                                                                                             |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <213> ORGANISM: Artificial<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer MX-F3Hpro-Rv                                                                                                                                                                                                                                                                                                                                                          |     |
| <400> SEQUENCE: 84                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| tttctagaac gcgtttttta ttttttcttc acacacttg                                                                                                                                                                                                                                                                                                                                                                                                            | 39  |
| <210> SEQ ID NO 85<br><211> LENGTH: 53<br><212> TYPE: DNA<br><213> ORGANISM: Artificial<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer HAPS-RhCHSpro3k-Fd                                                                                                                                                                                                                                                                                       |     |
| <400> SEQUENCE: 85                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| ccaagcttgg cgcgccttaa ttaaatttaa atcagcaaga gttgaagaaa tag                                                                                                                                                                                                                                                                                                                                                                                            | 53  |
| <210> SEQ ID NO 86<br><211> LENGTH: 33<br><212> TYPE: DNA<br><213> ORGANISM: Artificial<br><220> FEATURE:<br><223> OTHER INFORMATION: Primer NS-RhCHSpro3k-Rv                                                                                                                                                                                                                                                                                         |     |
| <400> SEQUENCE: 86                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| aaagctagca ctagtcatct cggagaaggg tcg                                                                                                                                                                                                                                                                                                                                                                                                                  | 33  |
| <pre>&lt;210&gt; SEQ ID NO 87<br/>&lt;211&gt; LENGTH: 531<br/>&lt;212&gt; TYPE: DNA<br/>&lt;213&gt; ORGANISM: Chrysanthemum<br/>&lt;220&gt; FEATURE:<br/>&lt;221&gt; NAME/KEY: misc_feature<br/>&lt;223&gt; OTHER INFORMATION: CmF3Hpro500<br/>&lt;220&gt; FEATURE:<br/>&lt;221&gt; NAME/KEY: primer_bind<br/>&lt;222&gt; LOCATION: (1)(21)<br/>&lt;220&gt; FEATURE:<br/>&lt;221&gt; NAME/KEY: primer_bind<br/>&lt;222&gt; LOCATION: (507)(531)</pre> |     |
| <400> SEQUENCE: 87                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| tactgttcga acctacaaag gaatatcaat acgagggctc aattattgtc tcggattcaa                                                                                                                                                                                                                                                                                                                                                                                     | 60  |
| tgaattcaca aggtaaataa acgcggtact cttttcattg gtccttcgtt ttatttgttt                                                                                                                                                                                                                                                                                                                                                                                     | 120 |
| gacaattaat tgggatggct ggcgtgtata atteteaata catgtetgat ttaatatgtg                                                                                                                                                                                                                                                                                                                                                                                     | 180 |
| attggttgac attcatgtga aattaatata ctcattttat gattacaaag acccacgatg                                                                                                                                                                                                                                                                                                                                                                                     | 240 |
| tataattaat tocaatottg tggaatggga tocattgtga acoggtgoat gattgttaog                                                                                                                                                                                                                                                                                                                                                                                     | 300 |
| gtggggatta cttttgattg gttcagcatt atcatataac ccccgttcaa cggatgcatg                                                                                                                                                                                                                                                                                                                                                                                     | 360 |
| ctacattggt acgtatacat atacgattca cgtgtggtag ttgataacta gcgcgatacg                                                                                                                                                                                                                                                                                                                                                                                     | 420 |
| cccccacccc atatttette aattttetet acaaatacce atgecaacet taegaaacae                                                                                                                                                                                                                                                                                                                                                                                     | 480 |
| tcattcccct ctactcatag acgcaccaag tgtgtgaaga aaaaataaaa a                                                                                                                                                                                                                                                                                                                                                                                              | 531 |

The invention claimed is:

1. A method for producing a chrysanthemum plant containing delphinidin in the petals thereof comprising expressing flavonoid 3',5'-hydroxylase (F3'5'H) using a transcriptional regulatory region; wherein the chrysanthemum plant is transformed with an expression vector or expression cassette

comprising a gene encoding F3'5'H and the transcriptional regulatory region; wherein the F3'5'H is derived from bell-flower (campanula), cineraria, verbena, or pansy; and wherein the transcriptional regulatory region is

a nucleic acid containing the nucleotide sequence indicated in SEQ ID NO: 34 or SEQ ID NO: 87. 2. The method according to claim 1, wherein a translation enhancer derived from tobacco alcohol dehydrogenase is further used in addition to the transcriptional regulatory region.

**3**. The method according to claim **2**, wherein the translation enhancer is coupled directly to a start codon of the F3'5'H 5 gene.

**4**. A chrysanthemum plant, or a progeny, a vegetative proliferation product, a part, or a tissue thereof, transformed by the method according to claim **1**.

**5**. A chrysanthemum plant, or a progeny, a vegetative pro- 10 liferation product, a part, or a tissue thereof according to claim **4**, which is a cut flower.

**6**. A cut flower processed product made from the cut flower according to claim **5**, wherein said cut flower processed product comprises a F3'5'H gene sequence from bellflower (cam- 15 panula), cineraria, verbena, or pansy operably linked to a transcriptional regulatory sequence, and wherein the transcriptional regulatory region is

a nucleic acid containing the nucleotide sequence indicated in SEO ID NO: 34 or SEO ID NO: 87. 20

7. The method according to claim 1, wherein the content of delphinidin in the petals is 25% by weight or more of the total weight of anthocyanidins, and wherein a translation enhancer derived from tobacco alcohol dehydrogenase is further used in addition to the transcriptional regulatory region. 25

**8**. The method according to claim **3**, wherein the content of delphinidin in the petals is 25% by weight or more of the total weight of anthocyanidins.

\* \* \* \* \*