(12) United States Patent

Noda et al.
(10) Patent No.: \quad US 9,074,215 B2
(45) Date of Patent:
(54) METHOD FOR PRODUCTION OF CHRYSANTHEMUM PLANT HAVING DELPHINIDIN-CONTAINING PETALS

Inventors: Naonobu Noda, Tsukuba (JP); Ryutaro Aida, Tsukuba (JP); Sanae Sato, Tsukuba (JP); Akemi Ohmiya, Tsukuba (JP); Yoshikazu Tanaka, Osaka (JP)

Assignees: Incorporated Adminstrative Agency, National Agriculture and Food Research Organization, Tsukuba-shi, Ibaraki (JP); Suntory Holdings Limited, Osaka-shi, Osaka (JP)
(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 713 days.
(21) Appl. No.: $13 / 265,688$
(22) PCT Filed:

Mar. 9, 2010
(86) PCT No.:

PCT/JP2010/053904
$\S 371$ (c)(1),
(2), (4) Date: Dec. 30, 2011
(87) PCT Pub. No.: WO2010/122849

PCT Pub. Date: Oct. 28, 2010
Prior Publication Data
US 2012/0096589 A1 Apr. 19, 2012
(30) Foreign Application Priority Data

Apr. 24, 2009 (JP
)
2009-107054
(51) Int. Cl.

C12N 15/82	(2006.01)
C12N 9/02	(2006.01)
A01H 5/02	(2006.01)

(52) U.S. Cl.

CPC C12N 15/8243 (2013.01); A01H 5/0255
(2013.01); C12N 9/0071 (2013.01); C12N

15/825 (2013.01)
(58) Field of Classification Search

USPC
800/282
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

| 5,948,955 A * | 9/1999 | Holton et al. 800/298 | |
| :--- | :--- | :--- | :--- | :--- |
| 6,573,429 B1 | $6 / 2003$ | Shinmyo et al. | |
| $7,105,719$ | B1 | $9 / 2006$ | Ashikari et al. |

FOREIGN PATENT DOCUMENTS

EP	1652916	$5 / 2006$
JP	$2003-79372$	$3 / 2003$
JP	$2004-65096$	$3 / 2004$
KR	$10-0726874$	$6 / 2007$
WO	$94 / 28140$	$12 / 1994$
WO	$96 / 25500$	$8 / 1996$

WO	$01 / 72984$	$10 / 2001$
WO	$2005 / 017147$	$2 / 2005$
WO	$2009 / 062253$	$5 / 2009$

OTHER PUBLICATIONS

Ukiya et al. (Constitutents of Compositae Plants. 2. Triterpene Diols, Triols, and Their 3-o-Fatty Acid Esters from Edible Chrysanthemum Flower Extract and Their Anti-inflammatory Effects, 49 J. Agric. Food Chem., 3187-3197 (2001)).*
Y. Tanaka et al., "Genetic engineering in floriculture," Plant Cell, Tissue and Organ Culture, Kluwer Academic Publishers, DO, vol. 80, No. 1, Jan. 1, 2005, pp. 1-24.
Supplementary European Search Report issued in EP 10766908.7 dated Jan. 23, 2013.
Tanaka, Y., "Flower colour and cytochromes P450", Phytochem Rev., 2006, vol. 5, p. 283-291.
Kanno, Y., et al., "Histochemical Analysis of Gene Expression Directed by the Promoter of a Flavanone 3-Hydroxylase Gene from Dendranthema x grandiflorum in Petunia hybrida", Journal of the Japanese Soceity for Horticultural Science, 2001, vol. 70, separate vol. 2, p. 193.
Kim, Y., et al., "Identification and Characterization of Flavanone 3-Hydroxylase (F 3 H) Gene from Dendranthema grandiflora", J. Kor. Soc. Hort. Sci., 2002, vol. 43, p. 666-670.
Aida, R., et al. "Improved translation efficiency in chrysanthemum and torenia with a translational enhancer derived from the tobacco alcohol dehydrogenase gene", Plant Biotechnology, 2008, vol. 25, p. 69-75.
Seo, J., et al., "Co-expression of flavonoid 3', 5'-hydroxilase and flavonoid 3'-hydroxiylase Accelerates Decolorization in Transgenic Chrysanthemum Petals", 2007, vol. 50, p. 626-631.
anno, Y., et al., "Expression of Anthocyanin Biosynthetic Genes in 3 cultivars of Chrysanthemum", Journal of the Japanese Society for Horticultural Science, 2000, vol. 69, separate vol. 1, p. 355.
Tanaka, Y., et al., "Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids", The Plant Journal, 2008, vol. 54, p. 733749.

Kondo, T., et al., "Structure of Malonylshisonin, a Genuine Pigment in Purple Leaves of Perilla ocimoides L. var. crispa Benth", Agricultural Biological Chemistry, 1989, vol. 53, p. 797-800.
(Continued)

Primary Examiner - Ashwin Mehta
Assistant Examiner - Rebecca Stephens
(74) Attorney, Agent, or Firm - Drinker Biddle \& Reath LLP

(57)

ABSTRACT

Disclosed are: a method for producing a chrysanthemum plant having delphinidin-containing petals using a transcriptional regulatory region for a chrysanthemum-derived flavanone 3 -hydroxylase (F 3 H) gene; and a chrysanthemum plant, a progeny or a vegetative proliferation product of the plant, or a part or a tissue of the plant, the progeny or the vegetative proliferation product, and particularly a petal or a cut flower of the plant. In the method for producing a chrysanthemum plant having delphinidin-containing petals, a flavonoid $3^{\prime}, 5^{\prime}$-hydroxylase ($\mathrm{F}^{\prime} 5^{\prime} \mathrm{H}$) is caused to be expressed in a chrysanthemum plant using a transcriptional regulatory region for a chrysanthemum-derived flavanone 3-hydroxylase (F3H) gene.

8 Claims, 4 Drawing Sheets

References Cited

OTHER PUBLICATIONS

Mitsuhara, I., et al., "Efficient Promoter Cassettes for Enhanced Expression of Foreign Genes in Dicotyledonous and Monocotyledonous Plants", Plant Cell Physiology, 1996, vol. 37, p. 49-59.
Comai, L., et al., "Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS elements", Plant Molecular Biology, 1990, vol. 15, p. 373-381.
Stam, M., et al., "The Silence of Genes in Transgenic Plants", Annals of Botany, 1997, vol. 79, p. 3-12.
Nozaki, K., et al., "Effects of high temperature on flower colour and anthocyanin content in pink flower genotypes of greenhouse chrysanthemum (Chrysanthemum morifolium Ramat.)", Journal of Horticultural Science \& Biotechnology, 2006, vol. 81, p. 728-734.
Takatsu, Y., et al., "Transgene inactivation in Agrobacterium-mediated chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) transformants", Plant Biotechnology, 2000, vol. 17, p. 241-245.
Aida, R., et al., "Efficient Transgene Expression in Chrysanthemum, Dendranthema grandiflorum (Ramat.) Kitamura, by Using the Promoter of a Gene for Chrysanthemum Chlorophyll- a / b-binding Protein", Breeding Science, 2004, vol. 54, p. 51-58.
Aida, R., et al., "Efficient Transgene Expression in Chrysanthemum, Chrysanthemum morifolium Ramat., with the Promoter of a Gene for Tobacco Elongation Factor 1α Protein", Japan Agricultural Research Quarterly, 2005, vol. 39, p. 269-274.
Narumi, T., et al., "Transformation of chrysanthemum with mutated ethylene receptor genes: $m D G$-ERSI transgenes conferring reduced ethylene sensitivity and characterization of the transformants", Postharvest Biology and Technology, 2005, vol. 37, p. 101-110. Aida, R., et al., "Chrysanthemum flower shape modification by suppression of chrysanthemum-AGAMOUSgene", Plant Biotechnology, 2008, vol. 25, p. 55-59.

Aida, R., et al., "Improved translation efficiency in chrysanthemum and torenia with a translational enhancer derived form the tobacco alcohol dehydrogenase gene", Plant Biotechnology, 2008, vol. 25, p. 69-75.
Courtney-Gutterson, N., et al, "Modification of Flower Color in Florist's Chrysanthemum: Production of a White-Flowering Variety Through Molecular Genetics", Bio/Technology, Mar. 1994, vol. 12, p. 268-271.

Ohmiya, A., et al., "Carotenoid Cleavage Dioxygenase (CmCCD4a) Contributes to White Color Formation in Chrysanthemum Petals ${ }^{1[o a] »,}$ Plant Physiology, Nov. 2006, vol. 142, pp. 1193-1201.
Annadana, S., et al., "The potato Lhca3.St. 1 promoter confers high and stable transgene expression in chrysanthemum, in contrast to CaMV-based promoters", Molecular Breeding, 2001, vol. 8, p. 335344.

Annadana, S., et al., "Cloning of the chrysanthemum UEPI promoter and comparative expression in florets and leaves of Dendranthema grandiflora", Transgenic Research, 2002, vol. 11, p. 437-445.
Gallie, D. R., et al., "The 5'-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo", Nucleic Acids Research, 1987, vol. 15, No. 8, p. 3257-3273. Kim, Y., "Identification and characterization of flavonoid 3',5'hydroxylase gene in transgenic Chrysanthemum jawadskii.", Plant Biology, Aug. 1997, p. 299.
Park, S. Y., et al., GenBank Accession: U86837 [online], Mar. 8, 1999. \{http://www.ncbi.nlm.nih.gov/sviewer. fcgi? 2801406:NCBI:994364\}.
International Search Report issued on May 11, 2010 in International PCT Application No. PCT/JP2010/053904 filed Mar. 9, 2010.
Kim et al. (1994) Plant Mol. Biol. 24: 105-117.
Kanno (2002) Nat'l Agricultural Res. Center 16: 281-282.
Noda et al. (2013) Plant Cell Physiol. 54: 1684-1695.

* cited by examiner

METHOD FOR PRODUCTION OF CHRYSANTHEMUM PLANT HAVING DELPHINIDIN-CONTAINING PETALS

CROSS REFERENCE TO RELATED APPLICATIONS

This application is the National Stage of International Application No. PCT/JP2010/053904 filed Mar. 9, 2010, and claims benefit of Japanese Patent Application No. 2009107054 filed Apr. 24, 2009, which are herein incorporated by reference in their entirety.

REFERENCE TO A SEQUENCE LISTING

A Sequence Listing containing SEQ ID NOS: 1-87 is incorporated herein by reference.

TECHNICAL FIELD

The present invention relates to a method for producing a chrysanthemum plant containing delphinidin in the petals thereof by using the transcriptional regulatory region of chry-santhemum-derived flavanone 3-hydroxylase (F3H) gene, a nucleic acid of that regulatory region, an expression vector or expression cassette containing that nucleic acid, and a chrysanthemum plant, progeny or vegetative proliferation product thereof, or a part or tissue thereof, and particularly a petal or cut flower thereof, in which that regulatory region has been introduced.

BACKGROUND ART

The use of genetic transformation technology makes it possible to impart new traits to plants by expressing a useful gene in a target plant. A wide range of genetically modified plants produced in this manner have already been cultivated. Since regulation of gene expression is mainly controlled at the level of transcription, transcriptional regulation is the most important in terms of regulating the expression of genes. Namely, expressing a gene at a suitable time, in a suitable tissue and at a suitable strength is important for producing an industrially useful genetically modified plant. In many cases, transcription is control by a DNA sequence on the 5^{\prime} untranslated region of a open reading frame. A region of DNA that determines the starting site of gene transcription and directly regulates the frequency thereof is referred to as a promoter. A promoter is located in a start codon consisting of several tens of base pairs (bp) on the 5^{\prime}-untranslated region, and frequently contains a TATA box and the like. A cis element that binds various transcriptional regulatory factors is also present on the 5^{\prime}-untranslated region, and the presence thereof serves to control the timing of transcription, the tissue in which transcription takes place and transcriptional strength. Transcriptional regulatory factors are classified into many families according to their amino acid sequence. For example, examples of well-known families of transcriptional regulatory factors include Myb transcriptional regulatory factor and bHLH (basic helix loop helix) regulatory factor. In actuality, the terms transcriptional regulatory factor and promoter are frequently used with the same meaning.

Anthocyanins, which compose the main components of flower color, are a member of secondary metabolites generically referred to as flavonoids. The color of anthocyanins is dependent on their color. Namely, the color becomes blue as the number of hydroxyl groups of the B ring of anthocyanidins, which is the chromophore of anthocyanins, increases. In
addition, as the number of aromatic acyl groups (such as coumaroyl groups or caffeolyl groups) that modify the anthocyanin increases (namely, the wavelength of maximum absorbance shifts to a longer wavelength), the color of the anthocyanin becomes blue and the stability of the anthocyanin is known to increase (see Non-Patent Document 1).

Considerable research has been conducted on those enzymes and genes that encode those enzymes involved in the biosynthesis of anthocyanins (see, Non-Patent Document 1). For example, an enzyme gene that catalyzes a reaction by which an aromatic acyl group is transferred to anthocyanin is obtained from Japanese gentian, lavender and petunias (see Patent Document 1 and Patent Document 2). An enzyme gene involved in the synthesis of anthocyanin that accumulates in the leaves of red perilla (malonylshisonin, 3-0-(6-0-(E)-p-coumaroyl- β-D-glucopyranosyl)-5-0-(6-0-malonyl- β-D-
glucopyranosy1)-cyanidin) (see Non-Patent Document 2) has previously been reported in hydroxycinnamoyl CoA: antho-cyanin-3-glucoside-aromatic acyl group transferase (3AT) gene (or more simply referred to as "shiso (perilla) anthocya-nin-3-acyltransferase (3AT) gene") (see Patent Document 1). Moreover, findings have also been obtained regarding the transcriptional regulation (control) of biosynthase genes of anthocyanins. Cis element sequences bound by Myb transcriptional regulatory factor and bHLH transcriptional regulatory factor are present in the transcriptional regulatory region located on the 5 '-region of the start codons of these genes. Myb transcriptional regulatory factor and bHLH transcriptional regulatory factor are known to control synthesis of anthocyanins in petunias, corn and perilla (see Non-Patent Document 1).

Promoters (also referred to as transcriptional regulatory regions) responsible for gene transcription in plants consist of so-called constitutive promoters, which function in any tissue and at any time such as in the developmental stage, organ/ tissue-specific promoters, which only function in specific organs and tissues, and time-specific promoters, which only express at a specific time of the developmental stage. Constitutive promoters are frequently used as promoters for expressing useful genes in genetically modified plants. Typical examples of constitutive promoters include cauliflower mosaic virus 35S promoter (also abbreviated as CaMV35S promoter) and promoters construction on the basis thereof (see Non-Patent Document 3), and Mac1 promoter (see NonPatent Document 4). In plants, however, many genes are only expressed in specific tissues or organs or are expressed timespecifically. This suggests that tissue/organ-specific or timespecific expression of genes is necessary for plants. There are examples of genetic recombination of plants that utilize such tissue/organ-specific or time-specific transcriptional regulatory regions. For example, there are examples of protein being accumulated in seeds by using a seed-specific transcriptional regulatory region.

However, although plants produce flowers of various colors, there are few species capable of producing flowers of all colors due to genetic restrictions on that species. For example, there are no varieties of rose or carnation in nature that are capable of producing blue or purple flowers. This is because roses and carnations lack the flavonoid 3 ', 5^{\prime}-hydroxylase gene required to synthesize the anthocyanidin, delphinidin, which is synthesized by many species that produce blue and purple flowers. By transformation with the flavonoid $3^{\prime}, 5^{\prime}$-hydroxylase gene of petunia or pansy, for example, which are specifies capable of producing blue and purple flowers, into these species, these species can be made to produce blue flowers. In the case of carnations, the transcriptional regulatory region of chalcone synthase gene derived from common snapdragon or
petunia is used to transcribe flavonid $3^{\prime}, 5^{\prime}$-hydroxylase gene derived from common snapdragon or petunia. Examples of plasmids containing the transcriptional regulatory region of chalcone synthase gene derived from common snapdragon or petunia include plasmids pCGP485 and pCGP653 described in Patent Document 3, and examples of plasmids containing a constitutive transcriptional regulatory region include plasmid PCGP628 (containing a Mac1 promoter) and plasmid pSPB130 (containing a CaMV35S promoter to which is added E12 enhancer) described in Patent Document 4.

However, it is difficult to predict how strongly such promoters function in recombinant plants to be able to bring about a target phenotype. In addition, since repeatedly using the same promoter to express a plurality of foreign genes may cause gene silencing, it is thought that this should be avoided (see Non-Patent Document 5).

Thus, although several promoters have been used to change flower color, a useful promoter corresponding to the host plant and the objective is needed in order to further change to a different flower color.

In particular, chrysanthemum plants (also simply referred to as chrysanthemums) account for about 30% of all wholesale flower sales throughout Japan (Summary of 2007 Flowering Plant Wholesale Market Survey Results, Ministry of Agriculture, Forestry and Fisheries), making these plants an important product when compared with roses accounting for roughly 9% and carnations accounting for roughly 7%. Although chrysanthemums come in flower colors including white, yellow, orange, red, pink and purplish red, there are no existing varieties or closely related wild varieties that produce bluish flowers such as those having a purple or blue color.

Thus, one objective of the selective breeding of bluish flowers is to stimulate new demand. Chrysanthemum flower color is expressed due to a combination of anthocyanins and carotenoids. Anthocyanins are able to express various colors due to differences in the structure of the anthocyanidin serving as the basic backbone, and differences in modification by sugars and organic acids. However, there are known to be two types of anthocyanins that govern chrysanthemum flower color in which cyanidin at position 3 is modified by glucose and malonic acid (cyanidin 3-0-($6^{\prime \prime}-0$-monomalonyl- β-glucopyranoside and 3-0-(3", $6^{\prime \prime}$ - 0 -dimalonyl- β-glucopyranoside) (see Non-Patent Document 6). In addition, these structures are comparatively simple (see FIG. 1). This causes the range of flower color attributable to anthocyanins in chrysanthemums to be extremely narrow. However, although the expression of bluish color is primarily the result of anthocyanins, since there is no gene that encodes the key enzyme of flavonoid $3^{\prime}, 5^{\prime}$-hydroxylase ($\mathrm{F} 3^{\prime} 5^{\prime} \mathrm{H}$) in chrysanthemums, del-phinidin-based anthocyanin, which produces blue color, is not biosynthesized in chrysanthemums (see FIG. 1). Therefore, the development of a technology has been sought for controlling the expression of chrysanthemum anthocyanins using genetic engineering techniques in order to be able to produce a chrysanthemum that produces bluish flowers by modifying anthocyanin-based pigment that accumulates in chrysanthemum petals.

As was previously described, although chrysanthemums are the most important flowering plant in Japan, since they are hexaploidal resulting in high ploidy and have a large genome size, in addition to having low transformation efficiency, since they may also cause silencing (deactivation) of transgenes, it is not easy to obtain genetically modified chrysanthemums capable of stable transgene expression. In chrysanthemums transformed with β-glucuronidase (GUS) gene coupled to CaMV35S promoter, the activity of the GUS gene is roughly one-tenth that of tobacco transformed with the
same gene, and that activity has been reported to decrease in nearly all individuals after 12 months have elapsed following transformation (see Non-Patent Document 7). Although a promoter of a chlorophyll a/b-bound protein that favorably functions in chrysanthemums has been reported to have been obtained in order to stably express an exogenous gene in chrysanthemums, this promoter is not suitable for expressing genes in flower petals in which there is little chlorophyll present (see Non-Patent Document 8). In addition, when GUS gene coupled to tobacco elongation factor 1 ($\mathrm{EF} 1 \alpha$) promoter is transformed into chrysanthemums, GUS gene has been reported to be expressed in leaves and petals even after the passage of 20 months or more (see Non-Patent Document 9). Moreover, there are also examples of flower life being prolonged by expressing a mutant ethylene receptor gene in chrysanthemums (see Non-Patent Document 10), flower form being changed by suppressing expression of chrysanthemum AGAMOUS gene (see Non-Patent Document 11), and expression of exogenous genes being increased in chrysanthemums (see Non-Patent Document 12) by using a translation enhancer of tobacco alcohol dehydrogenase (see Patent Document 7).
On the other hand, although there have been examples of successful alteration of chrysanthemum flower color by genetic recombination, including a report of having changed pink flowers to white flowers by suppressing the chalcone synthase (CHS) gene by co-suppression (see Non-Patent Document 13), and a report of having changed white flowers to yellow flowers by suppressing carotenoid cleavage dioxygenase (CCD4a) by RNAi (see Non-Patent Document 14), all of these methods involve alteration of flower color by suppressing expression of endogenous genes, and there have been no successful examples of altering flower color by overexpression of exogenous genes as well as no examples of having realized a change in anthocyanin structure or an accompanying change in flower color.

Although attempts to alter flower color by over-expression of an exogenous gene have been reported that involve transformation with a gene encoding $\mathrm{F} 3^{\prime} 5^{\prime} \mathrm{H}$, which is an enzyme required for synthesis of delphinidin (see Patent Document 5 and Non-Patent Document 15), the delphinidin produced due to the action of the transfected $\mathrm{F} 3^{\prime} 5^{\prime} \mathrm{H}$ gene accumulates in ray petals, and there are no reports of the production of bluish chrysanthemums. In chrysanthemums, even if $\mathrm{F}^{\prime} 5^{\prime} \mathrm{H}$ is expressed with CaMV35S promoter, production of delphinidin is not observed (see Non-Patent Document 15). In addition, expression of a gene expressed with CaMV35S promoter is unsuitable for stable expression, and for example, ends up dissipating accompanying growth of the chrysanthemum transformant (see Non-Patent Document 7). Potato Lhca3.St. 1 promoter (see Non-Patent Document 16), chrysanthemum UEP1 promoter (see Non-Patent Document 17) and tobacco EF1 α promoter (see Patent Document 6 and Non-Patent Document 9), for example, have been developed for use as promoters enabling efficient and stable expression of exogenous genes in the ray petals of chrysanthemums. However, there have been no reports describing alteration of chrysanthemum flower color by over-expression of an exogenous gene using these promoters. On the basis of the above, in order to produce chrysanthemums in which flower color has been altered by genetic recombination, it is necessary to establish a technology for controlling the expression of flavonoid biosynthesis genes, including the development of a promoter suitable for chrysanthemums.
Although gene expression is mainly controlled by transcriptional regulatory regions, sequences are also known that improve translation of mRNA. For example, the omega
sequence derived from tobacco mosaic virus is known to increase the translation efficiency of heterologous genes coupled to the omega sequence both in vitro and in vivo (see Non-Patent Document 18). In addition, a sequence (ADH200) present in the 5^{\prime}-untranslated region of tobacco alcohol dehydrogenase (NtADH5'UTR) is known to contribute to improved stability of the expression of heterologous genes (see Patent Document 7). In addition, in the case of coupling a 94 bp translation enhancer (ADHNF, see Patent Document 8) present downstream from this sequence to the 3 'side of CaMV35S promoter and further transformation with an expression cassette coupled with GUS gene, this sequence has been reported to contribute to increased translation efficiency in chrysanthemums (see Non-Patent Document 12). However, there are no examples of this sequence being used to change flower color by altering the structure and composition of flavonoids. Since it is necessary to express a heterologous gene in epidermal cells in which flavonoids and anthocyanins primarily accumulate in order to alter flower color, it is difficult to infer from conventional results whether or not NtADH5'UTR (ADH200 or translation enhancer ADHNF) is effective for altering flower color.

PRIOR ART DOCUMENTS

Patent Documents

Patent Document 1: WO 96/25500
Patent Document 2: WO 01/72984
Patent Document 3: WO 94/28140
Patent Document 4: WO 05/17147
Patent Document 5: U.S. Pat. No. 5,948,955
Patent Document 6: Japanese Unexamined Patent Publication No. 2004-65096
Patent Document 7: U.S. Pat. No. 6,573,429
Patent Document 8: Japanese Unexamined Patent Publication No. 2003-79372

Non-Patent Documents

Non-Patent Document 1: Plant J., 54, 737-749, 2008
Non-Patent Document 2: Agricultural and Biological Chemistry, 53, 797-800, 1989
Non-Patent Document 3: Plant Cell Physiology, 37, 49-59, 1996
Non-Patent Document 4: Plant Molecular Biology, 15, 373381, 1990
Non-Patent Document 5: Annals of Botany, 79, 3-12,
Non-Patent Document 6: Journal of Horticultural Science \& Biotechnology, 81, 728-734, 2006
Non-Patent Document 7: Plant Biotechnology, 17, 241-245, 2000
Non-Patent Document 8: Breeding Science, 54, 51-58, 2004
Non-Patent Document 9: Japan Agricultural Research Quarterly, 39, 269-274, 2005
Non-Patent Document 10: Postharvest Biology and Technology, 37, 101-110, 2005
Non-Patent Document 11: Plant Biotechnology, 25, 55-59, 2008
Non-Patent Document 12: Plant Biotechnology, 25, 69-75, 2008
Non-Patent Document 13: Bio/Technology, 12, 268, 1994
Non-Patent Document 14: Plant Physiology, 142, 1193, 2006
Non-Patent Document 15: J. Plant Biol., 50, 626, 2007
Non-Patent Document 16: Mol. Breed., 8, 335, 2001
Non-Patent Document 17: Transgenic Res., 11, 437, 2002 regulatory region of flavanone 3-hydroxylase (F3H) gene derived from chrysanthemum, and able to hybridize under highly stringent conditions with a nucleic acid composed of a
nucleotide sequence complementary to the nucleotide highly stringent conditions with a nucleic acid composed of a
0 nucleotide sequence complementary to the nucleotide sequence indicated in SEQ ID NO. 34 or SEQ IDNO. 87; and,
(4) a nucleic acid able to function as a transcriptional
(4) a nucleic acid able to function as a transcriptional
regulatory region of flavanone 3-hydroxylase (F 3 H) gene derived from chrysanthemum, and having sequence identity of at least 90% with the nucleotide sequence indicated in SEQ ID NO. 34 or SEQ ID NO. 87.
[2] The method described in [1] above, wherein the flavonoid $3^{\prime}, 5^{\prime}$-hydroxylase ($\mathrm{F} 3^{\prime} 5^{\prime} \mathrm{H}$) is derived from bellflower (campanula), cineraria, verbena and pansy \#40.

Problems to be Solved by the Invention

An object to be solved by the present invention is to provide a method for producing a chrysanthemum plant containing delphinidin in the petals thereof by using the transcriptional regulatory region of chrysanthemum-derived flavanone 3-hydroxylase (F3H) gene, and a chrysanthemum plant, progeny or vegetative proliferation product thereof, or a part or tissue thereof, and particularly a petal or cut flower thereof, transformed with that regulatory region.

Means for Solving the Problems
As a result of conducting extensive studies to solve the aforementioned problems, the inventors of the present invention found that when flavonoid $3^{\prime}, 5^{\prime}$-hydroxylase ($\mathrm{F} 3^{\prime} 5^{\prime} \mathrm{H}$) gene is expressed in chrysanthemum using a transcriptional regulatory region of flavanone 3-hydroxylase (F3H) derived from chrysanthemum, a large amount of delphinidin accumulates in the petals thereof, flower color changes, and flower color changes further due to an even larger accumulation of delphinidin as a result of adding a translational enhancer derived from tobacco alcohol dehydrogenase gene, and confirmed the usefulness thereof through experimentation, thereby leading to completion of the present invention.

Namely, the present invention is as described below.
[1] A method for producing a chrysanthemum plant containing delphinidin in the petals thereof comprising the step of expressing flavonoid $3^{\prime}, 5^{\prime}$-hydroxylase ($\mathrm{F} 3^{\prime} 5^{\prime} \mathrm{H}$) in a chrysanthemum plant using as a transcriptional regulatory region a nucleic acid selected from the group consisting of:
(1) a nucleic acid containing the nucleotide sequence indicated in SEQ ID NO. 34 or SEQ ID NO. 87;
(2) a nucleic acid able to function as a transcriptional regulatory region of flavanone 3-hydroxylase (F 3 H) gene derived from chrysanthemum, and containing a nucleotide sequence in which the nucleotide sequence indicated in SEQ ID NO. 34 or SEQ ID NO. 87 has been modified by addition, deletion and/or substitution of one or several nucleotides;
(3) a nucleic acid able to function as a transcriptional
[3] The method described in [1] or [2] above, wherein a translational enhancer derived from tobacco alcohol dehydrogenase gene is further used in addition to the transcriptional regulatory region.
[4] The method described in any of [1] to [3] above, wherein an expression vector or expression cassette is used in which

Non-Patent Document 18: Nucleic Acids Research, 15, 32573273, 1987

SUMMARY OF THE INVENTION

 the translational enhancer is coupled directly to a start codon of the F3'5'H gene.[5] The method described in any of [1] to [4] above, wherein the content of delphinidin in the petals is 25% by weight or more of the total weight of anthocyanidins.
[6] A chrysanthemum plant, progeny thereof, or vegetative proliferation product, part or tissue thereof, containing the nucleic acid described in [1] above or produced according to the method described in any of [1] to [5] above.
[7] The chrysanthemum plant, progeny thereof, or vegetative proliferation product, part of tissue thereof, described in [6] above, which is a cut flower.
[8] A cut flower processed product using the cut flower described in [7] above.

Effects of the Invention

According to the present invention, it was determined that when flavonoid $3^{\prime}, 5^{\prime}$-hydroxylase ($\mathrm{F}^{\prime} 5^{\prime} \mathrm{H}$) gene is expressed in chrysanthemum using the transcriptional regulatory region of flavanone 3-hydroxylase (F 3 H) derived from chrysanthemum, more delphinidin accumulates in the flower petals than in the case of using another promoter, and when the flower color becomes bluer, an even larger amount of delphinidin accumulates as a result of adding a translational enhancer derived from tobacco alcohol dehydrogenase gene, thereby causing the flower color to become even bluer.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram of the flavonoid biosynthesis pathway in transformed chrysanthemum transformed with F3'5'H gene.

FIG. 2 is a schematic diagram of a binary vector for introducing F3'5'H gene.

FIG. 3 indicates the flower color and ratio of delphinidin content in transformed individuals transformed with chrysanthemum F3Hpro::ADHNF-bellflower F3'5'H::NOSter.

FIG. 4 indicates the construction process of pBI 121 chrysanthemum F3Hpro1k::ADHNF-bellflower F3'5'H::NOSter.

EMBODIMENTS OF THE INVENTION

The present invention relates to a method for producing a chrysanthemum plant containing delphinidin in the petals thereof, comprising transforming chrysanthemum with a vector containing a gene cassette that causes expression of flavonoid $3^{\prime}, 5^{\prime}$-dehydroxylase ($\mathrm{F} 3^{\prime} 5^{\prime} \mathrm{H}$) by the 5^{\prime}-region of a gene that encodes chrysanthemum flavanone 3-hydroxylase (F3H) (also referred to as "CmF3Hpro" or "chrysF3H5"'). The gene cassette preferably contains a translational enhancer derived from tobacco alcohol dehydrogenase gene (see bottom of FIG. 2). The delphinidin content in the flower petals is preferably 25% by weight or more of the total weight of anthocyanidins, and the color of the flower petals is altered towards blue. The present invention also relates to a chrysanthemum plant, progeny thereof, or vegetative proliferation product, part or tissue thereof, produced according to that method or containing CmF 3 H pro. The part or tissue is preferably a flower petal or cut flower.

In the present description, an "expression cassette" refers to a DNA fragment in which a promoter and a terminator are coupled to arbitrary nucleic acids.

According to the present invention, since $\mathrm{F}^{\prime} 5^{\prime} \mathrm{H}$ gene is expressed in ray petals of chrysanthemum, and that enzyme protein is synthesized and functions, a chrysanthemum having a bluish flower color can be produced by allowing del-phinidin-based anthocyanin to be synthesized and accumulate. Although accumulation of delphinidin (max. 5.4\%) was
confirmed in the case of using RoseCHSpro (rose chalcone synthase (CHS) gene promoter), R. rugosa DFRpro (Rugosa rose dihydroflavonol-4-reductase (DFR) gene promoter), R . rugosa 3 Hpro (R. rugosa flavanone 3-hydroxylase (F3H)) or Viola F3'5'H\#40pro (pansy F3'5'H gene promoter) for the promoter contained in the gene cassette used to express F3'5'H (see Table 1), this did not lead to flower color becoming bluish. Therefore, as a result of repeatedly conducting expression experiments on $\mathrm{F}^{\prime} 5^{\prime}$ 'H using various types of promoters in order to discover an effective promoter for enhancing accumulation of delphinidin in chrysanthemum flower petals and making flower color bluish, CmF3Hpro was determined to be an effective promoter. The use of CmF 3 Hpro made it possible to improve accumulation of delphinidin in comparison with the case of using other promoters (see Table 1 , mean: 31.4%, max.: 80.5%), and led to the attaining of bluish flower color (see FIG. 3, RHS color chart 79A, 77A, 72 A and 72 B). In addition, within the $\mathrm{F} 3^{\prime} 5^{\prime} \mathrm{H}$ gene expressed by CmF3Hpro, F3'5'H derived from bellflower (delphinidin accumulation rate: max. 81%), cineraria (delphinidin accumulation rate: max. 36%), verbena and pansy (delphinidin accumulation rate: max. 27% to 28%) were found to have the ability to change chrysanthemum flower color to purple. Moreover, transformation with a gene cassette directly coupled with tobacco ADH translational enhancer (see Patent Document 8) was successful in altering flower color by enabling anthocyanin having delphinidin for the basic backbone thereof to be efficiently accumulated in ray petals of chrysanthemum (see Table 1, FIG. 3). Furthermore, direct coupling refers to coupling without containing a surplus nucleic acid sequence between one polynucleotide and another polynucleotide.

An example of a transcriptional regulatory region according to the present invention is a nucleic acid composed of a nucleotide sequence indicated in SEQ ID NO. 34 or SEQ ID NO. 87. However, a promoter composed of a base sequence in which several ($1,2,3,4,5,6,7,8,9$ or 10) nucleotides has been added, deleted and/or substituted in a nucleic acid composed of a nucleotide sequence indicated in SEQ ID NO. 34 or SEQ ID NO. 87 is also thought to maintain activity similar to that of the original promoter. Thus, the transcriptional regulatory region according to the present invention can also be a nucleic acid composed of a nucleotide sequence in which one or several nucleotides have been added, deleted and/or substituted in the nucleotide sequence indicated in SEQ ID NO. 34 or SEQ ID NO. 87 provided the nucleic acid is able to function as a transcriptional regulatory region of flavanone 3-hydroxylase (F 3 H) gene derived from chrysanthemum.
The transcriptional regulatory region according to the present invention can also be a nucleic acid able to function as a transcriptional regulatory region of flavanone 3-hydroxylase (F 3 H) gene derived from chrysanthemum and able to hybridize under highly stringent conditions with the nucleotide sequence indicated in SEQ ID NO. 34 or SEQ ID NO. 87, or a nucleic acid able to function as a transcriptional regulatory region of flavanone 3-hydroxylase (F 3 H) gene derived from chrysanthemum and has sequence identity of at least 90% with the nucleotide sequence indicated in SEQ ID NO. 34 or SEQ ID NO. 87.

Examples of these nucleic acids include nucleic acids composed of nucleotide sequences having sequence identity with the nucleotide sequence indicated in SEQ ID NO. 34 of preferably about 70% or more, more preferably about 80%, $81 \%, 82 \%, 83 \%, 84 \%, 85 \%, 86 \%, 87 \%, 88 \%, 89 \%, 90 \%$, $91 \%, 92 \%, 93 \%, 94 \%, 95 \%, 96 \%, 97 \%$ or 98%, and most preferably about 99%.

Here, stringent conditions refer to hybridization conditions easily determined by a person with ordinary skill in the art that determined empirically typically dependent on probe length, washing temperature and salt concentration. In general, the temperature for suitable annealing becomes higher the longer the probe, and the temperature becomes lower the shorter the probe. Hybridization is generally dependent on the ability of denatured DNA to anneal in the case a complementary strand is present in an environment at a temperature close to or below the melting temperature thereof. More specifically, an example of lowly stringent conditions consists of washing and so forth in 0.1% SDS solution at $5 \times$ SSC under temperature conditions of $37^{\circ} \mathrm{C}$. to $42^{\circ} \mathrm{C}$. in the filter washing stage following hybridization. In addition, an example of highly stringent conditions consists of washing and so forth in 0.1% SDS at $0.1 \times \operatorname{SSC}$ and $65^{\circ} \mathrm{C}$. in the washing stage. The use of more highly stringent conditions makes it possible to obtain polynucleotides having higher homology or identity.

In the present invention, the flavonoid $3^{\prime}, 5^{\prime}$-hydroxylase ($\mathrm{F} 3^{\prime} 5^{\prime} \mathrm{H}$) gene is preferably derived from bellflower (campanula), cineraria, verbena or pansy \#40. In the present invention, a translation enhancer derived from tobacco alcohol dehydrogenase is preferably further used in addition to the transcriptional regulatory region. In addition, the translation enhancer is preferably directly coupled to a start codon of the F3'5'H gene in a gene cassette of an expression vector.

In the method of the present invention, the delphinidin content in the flower petals is preferably 25% by weight or more of the total weight of anthocyanidins.

The present invention is a chrysanthemum plant, progeny thereof, or vegetative proliferation product, part or tissue thereof, produced according to the method of the present invention or transformed with the aforementioned nucleic acid, and is preferably a flower petal or cut flower.

The present invention also relates to a processed product that uses the aforementioned cut flower (cut flower processed product). Here, a cut flower processed product includes, but is not limited to, a pressed flower, preserved flower, dry flower or resin-sealed product obtained by using the cut flower.

EXAMPLES

The following provides a detailed explanation of the present invention through examples thereof.

Molecular biological techniques were carried out in accordance with Molecular Cloning (Sambrook and Russel1, 2001) unless specifically indicated otherwise.

The following Reference Examples 1 to 9 are examples of using a promoter other than the 5^{\prime}-region of a gene encoding flavanone 3-hydroxylase (F3H) of chrysanthemum (CmF3Hpro), while on the other hand, Examples 1 to 10 are examples relating to the 5^{\prime}-region of a gene encoding flavanone 3-hydroxylase (F3H) of chrysanthemum (CmF3Hpro).

Reference Example 1

Expression of F3'5'H Gene by Tobacco EF1 α Promoter

pBIEF1 α described in Patent Document 6 was digested with restrictases HindIII and BamHI to obtain a roughly 1.2 kb DNA fragment containing a promoter sequence of tobacco EF1a. This DNA fragment was inserted into the 5 '-side of iris DFR cDNA of pSPB909 described in Patent Document 4 to obtain a plasmid pSLF339.A plasmid pSLF340 was similarly
constructed in which petunia DFR cDNA (described in International Publication WO 96/36716) was inserted instead of iris DFR cDNA.
A plasmid obtained by inserting a BP40 fragment of pansy F3'5'H gene, excised by partial digestion with BamHI and XhoI from pCGP1961 described in Patent Document 4, into BamHI and SalI sites of pSPB176 (described in Plant Science, 163, 253-263, 2002) was designated pSPB575. The promoter portion of this plasmid was replaced with the promoter of the aforementioned tobacco EF 1α using HindIII and BamHI to obtain pSLF338. A fragment containing iris DFR cDNA was inserted into pSLF339 digested with AscI at this Asel site. The resulting plasmid was designated pSLF346. This plasmid pSLF346 is designed to express pansy F3'5'H and iris DFR genes in plants under the control of the promoter of tobacco EF1 α.
Plasmid pLHF8 containing lavender $\mathrm{F}^{\prime} 5^{\prime} \mathrm{H}$ cDNA is described in International Publication WO 04/20637. Plasmid pSPB2772 was obtained by coupling this plasmid to the DNA fragment having the higher molecular weight among a DNA fragment obtained by digesting this plasmid with BamHI and XhoI and a DNA fragment of pSPB176 obtained by digesting with BamHI and SaII. In this plasmid, lavenderderived $\mathrm{F}^{\prime} 5^{\prime} \mathrm{H}$ cDNA is coupled to CaMV35S promoter to which has been added E12 enhancer. This promoter portion was replaced with the aforementioned promoter of tobacco EF1a using HindIII and BamHI to obtain plasmid pSPB2778. A fragment containing petunia DFR cDNA within pSFL340 digested with AscI was inserted into this Ascl site. The resulting plasmid was designated pSPB 2780 This plasmid pSPB2780 is designed so as to express lavender F3'5'H and petunia DFR genes in plants under the control of tobacco EF1 α promoter.
Plasmid pSPB2777 was obtained by replacing the promoter portion of plasmid pSPB748 described in Plant Biotechnol., 23, 5-11 (2006) (in which butterfly pea-derived F3'5'H cDNA is coupled to CaMV35S promoter to which has been added E12 enhancer) with the aforementioned promoter of tobacco EF1 α using HindIII and BamHI. A fragment of pSLF340 digested with AscI containing petunia DFR cDNA was inserted into this AscI site. The resulting plasmid was designated pSPB2779. This plasmid pSPB2779 is designed to express butterfly pea F3'5'H and petunia DFR genes in plants under the control of the promoter of tobacco EF1 α.

Each of the aforementioned plasmids pSFL346, pSPB2780 and pSPB2779 were transformed into Agrobacterium and then transfected into chrysanthemum variety 94-765 using this transformed Agrobacterium. Although anthocyanidins in flower petals of the transformed chrysanthemum were analyzed, delphinidin was not detected.

Reference Example 2

Chrysanthemum Transfected with Cineraria F3'5'H Gene Promoter

RNA was extracted based on an established method from the petals of a bud of blue Cineraria Senetti (Suntory Flowers Ltd.). A cDNA library was produced using the ZAP-cDNA® Library Construction Kit (Stratagene Corp., Catalog No. 200450) in accordance with the method recommended by the manufacturer using poly-A+RNA prepared from this RNA. This cDNA library was then screened using butterfly pea F3'5'H cDNA (Clitoria ternatea, see Plant Biotechnology, 23, 5-11 (2006)) labeled with the DIG System (Roche Applied Science) according to the method recommended by the manufacturer. Forty eight phages indicating signal were iso-

12

lated. Plasmids were obtained from these phages by in vivo excision according to the method recommended by the manufacturer (Stratagene).

The nucleotide sequences of the cDNA portions contained in these plasmids were determined, a Blast search was made of DNA databases, numerous genes were obtained that demonstrated homology with cytochrome P450, and these genes were able to be classified into 8 types. Among these, the entire nucleotide sequence of Ci5al8 (SEQ ID NO. 77), which was presumed to be classified as CYP75B, was determined. A pBluescript SKII-plasmid containing this sequence was designated pSPB2774.

Chromosomal DNA was extracted from a leaf of the same Cineraria, and a chromosome library was produced using the λ BlueSTAR ${ }^{\text {TM }}$ Xho I Half-Site Arms Kit (Novagen, on the Internet at merckbiosciences.com/product/69242). The resulting 200,000 plaques were screened using a Ci5a18 cDNA fragment labeled with DIG. This cDNA fragment was amplified using Ci 5 a 18 as template and using primers Ci5a18F1 (SEQ ID NO. 81: 5'-CATCTGTTTTCTGC-CAAAGC- 3^{\prime}) and Ci5a18R1 (SEQ ID NO. 82: 5^{\prime}-GGATT-AGGAAACGACCAGG-3'). Four plaques were ultimately obtained from the resulting 17 plaques, and these were converted to plasmids by in vivo excision. When their DNA nucleotide sequences were determined, they were found to contain the same sequences. Among these, a clone designated gCi01-pBluestar was used in subsequent experiments. The cloned nucleotide sequence of $\mathrm{gCi} 01-\mathrm{pBluestar}$ is shown in SEQ ID NO. 79. This sequence was expected to contain a 5 '-untranslated containing a sequence having promoter activity of cineraria F3'5'H, a translated region, and a 3^{\prime}-untranslated region.

A roughly 5.7 kb DNA fragment excised from gCi01pBluestar with PvuI and EcoRV (SEQ ID NO. 80) was blunted using a DNA blunting kit (Takara). This DNA fragment was then cloned into the SmaI site of pBinPLUS and designated pSPB 3130 . This binary vector had an nptII gene able to be used to screen the T-DNA region with kanamycin.
pSPB3130 was transformed into chrysanthemum variety 94-765 using an Agrobacterium method. Although anthocyanidins in the petals of the transformed chrysanthemum were analyzed, delphinidin was not detected and flower color did not change.

Reference Example 3

Production of Delphinidin Using Rose Chalcone Synthase Gene Promoter

A binary vector was constructed in which pansy-derived F3'5'H BP\#18 gene was coupled to a rose-derived chalcone synthase promoter described in PCT International Patent Publication No. PCT/AU03/01111, and this binary vector was designated pBRBP 18 . The gene contained in this binary vector was transformed into chrysanthemum variety 94-765 as described in Reference Examples 1 and 2. When anthocyanidins in the flower petals of the transformed chrysanthemum were analyzed, although a maximum of 5.4% of delphinidin was detected with respect to all anthocyanidins, there was no change in flower color observed.

In addition, pSPB3325 (rose CHSpro::pansy \#18+rose CHSp:: chrysanthemum F3'H IR) described in the ninth row from the top in Table 1 is an example of the production of delphinidin using rose chalcone synthase gene promoter, and delphinidin production in this example reached a maximum of 3.6%.

Reference Example 4

Production of Delphinidin Using Pansy F3'5'H Gene Promoter

(1) Cloning of Perilla Anthocyanin 3-Acyl Transferase Chromosome Gene

There are known to be red varieties of perilla in which anthocyanins accumulate in the leaves and green varieties in which they do not. Chromosomal DNA from the leaves of the former was prepared using a reported method (Plant Mol. Biol., December 1997, 35(6), 915-927). This chromosomal DNA was partially decomposed with Sau3AI (Toyobo), and a fraction containing a 10 kb to 15 kb DNA fragment was recovered using a sucrose density gradient method. This fragment was then inserted into the BamHI site of EMBL3 (Promega), a type of lambda phage vector, using a known method to prepare a genomic DNA library. The resulting library was screened using pSAT208 (see Plant Cell Physiol., April 2000, 41(4), 495-502), which is cDNA of anthocyanin 3 -acyl transferase derived from perilla, as a probe. Screening of the library was in accordance with a previously reported method (Plant Cell Physiol., July 1996, 37(5), 711-716). Plaques that hybridized with the probe were blunted and cultured, and DNA was prepared from the resulting phage.

(2) Determination of Nucleotide Sequence of Perilla Anthocyanin 3-Acyl Transferase Chromosome Gene

$10 \mu \mathrm{~g}$ of the DNA obtained above were digested with XbaI and isolated with 0.7% agarose gel followed by blotting onto Hybond-N (Amersham). When this film was hybridized in the same manner as previously described, a roughly 6.8 kb DNA fragment was found to hybridize with the probe. After digesting $20 \mu \mathrm{~g}$ of the same DNA with XbaI and isolating with 0.7% agarose gel, a roughly 6.8 kb DNA fragment was purified using a GeneClean Kit and coupled with pBluescript SKII-digested with XbaI. The resulting plasmid was designated pSPB 513 . The DNA sequence derived from perilla contained in this plasmid was determined by primer walking. The nucleotide sequence thereof is shown in SEQ ID NO. 4. This sequence contains a region that demonstrates high homology with anthocyanin 3-acyltransferase cDNA in the form of pSAT208, the amino acid sequence (SEQ ID NO. 6) of protein encoded by this region was observed to demonstrate substitution of 19 amino acid residues and deletion of 2 amino acid residues in comparison with the amino acid sequence encoded by pSAT208, and there were no introns observed. In addition, the sequence of the region demonstrating high homology with pSAT208 contained a 3438 bp sequence upstream from ATG that was thought to be the start codon, and a 2052 bp sequence downstream from TAA that was thought to be the stop codon thereof. A different open reading frame (ORF, SEQ ID NO. 5), which was not anthocyanin 3 -acyltransferase, was present in the aforementioned 3438 bp sequence. The following experiment was conducted to amplify the transcriptional regulatory region of shiso (perilla) anthocyanin 3-acyl transferase gene, excluding this portion.

(3) Amplification of Transcriptional Regulatory Region of Shiso Anthocyanin 3-Acyltransferase Gene

PCR (25 cycles of a reaction consisting of holding for 1 minute at $95^{\circ} \mathrm{C}$., 1 minute at $52^{\circ} \mathrm{C}$., 2 minutes at $72^{\circ} \mathrm{C}$. and

1 minute at $95^{\circ} \mathrm{C}$.) was carried out using 1 ng of pSPB 513 as template and two types of primers (5'-AAGCTTAACTATTATGATCCCACAGAG-3' (SEQ ID NO. 7, underline indicates HindIII recognition sequence) and 5'-GGATCCGGCGGTGTTGAACGTAGC-3' (SEQ ID NO. 8 , underline indicates BamHI recognition sequence)). The amplified roughly 1.1 kb DNA fragment was digested with HindIII and BamHI.

The plasmid pSPB567 described in Patent Document 4 (in which pansy-derived flavonoid $3^{\prime}, 5^{\prime}$-hydroxylase gene is coupled to the 3^{\prime}-side of cauliflower mosaic 35 S promoter to which has been added E12 enhancer, and in which a nopaline synthase terminator is further coupled to the 3^{\prime}-side thereof) was digested with PacI, and a DNA fragment containing pansy-derived flavonoid $3^{\prime}, 5^{\prime}$-hydroxylase gene was cloned into the Pad site of $\mathrm{pBin}+$. A plasmid in which the cauliflower mosaic 35S promoter to which E12 enhancer was added is present close to the AscI site of $\mathrm{pBin}+$ in the resulting plasmid was designated pSPB575. This plasmid was then digested with HindIII and BamHI, and a DNA fragment obtained by digesting a roughly 1.1 kb DNA fragment containing the transcriptional regulatory region of perilla anthocyanin 3 -acyltransferase with HindIII and BamHI was inserted therein. The resulting plasmid was designated pSFL205.

Plasmid pSFL205 was digested with HindIII and SacI, and a roughly 100 bp DNA fragment was recovered. This DNA fragment, a roughly 4 kb DNA fragment obtained by digesting pSPB513 with SacI and XbaI, and a plasmid pBin+(see Transgenic Research, 4, 288-290, 1995) digested with HindIII and Xbal were coupled to obtain plasmid pSPB 3311. This plasmid pSPB3311 is a binary vector that contains the nucleotide sequence indicated in SEQ ID NO. 2, and contains the transcriptional regulatory region of perilla anthocyanin 3 -acyltransferase gene and an untranslated region of the 3 'side thereof.
(4) Construction of pSPB3323

The transcriptional regulatory region of pansy flavonoid $3^{\prime}, 5^{\prime}$-hydroxylase gene BP $\# 40$ (see WO 04/020637) was amplified as described below using the Takara LA PCR ${ }^{\text {TM }}$ In Vitro Cloning Kit.

Chromosomal DNA was prepared from a pansy leaf using the DNA Easy Plant Kit (Qiagen). $3 \mu \mathrm{~g}$ of the chromosomal DNA were digested with restriction enzyme HindIII. The digested DNA was coupled with HindIII terminal DNA (included in Takara LA PCR ${ }^{\text {TM }}$ In Vitro Cloning Kit) by reacting for 40 minutes at 16° C. using Ligation High (Takara). After diluting $4 \mu \mathrm{l}$ of the reaction mixture with $10 \mu \mathrm{l}$ of water and denaturing the coupled DNA by treating for 10 minutes at 94° C., the reaction mixture was cooled in ice. 5 pmol of primer C1
(5^{\prime}-GTACATATTGTCGTTAGAACGCG-TAATACGACTCA-3', SEQ ID NO. 9, included in the kit as a partial sequence of HindIII cassette sequence) and 5 pmol of primer BP40-i5 (5'-AGGTGCATGATCGGACCATACTTC3^{\prime}, SEQ ID NO. 10, equivalent to complementary strand of translated region of $\mathrm{BP} \# 40$) were then added followed by repeating 30 cycles of a reaction in $25 \mu 1$ of the reaction mixture consisting of 20 seconds at $98^{\circ} \mathrm{C}$. and 15 minutes at $68^{\circ} \mathrm{C}$. in accordance with the kit protocol. The reaction mixture was then diluted 10 -fold with water. After reacting for 5 minutes at $98^{\circ} \mathrm{C}$. in 25 of a reaction mixture containing 5 pmol of primer C2 (5^{\prime}-CGTTAGAACGCGTAATAC-GACTCACTATAGGGAGA-3', SEQ ID NO. 11, included in kit as partial sequence of HindIII cassette sequence) and 5 pmol of primer BP40-i7 (5'-GACCATACTTCTTAGC-GAGTTTGGC-3', SEQ ID NO. 12) using $0.5 \mu 1$ of this dilu-
tion as template, 30 cycles of a reaction were repeated consisting of reacting for 20 seconds at $98^{\circ} \mathrm{C}$. and 15 minutes at $68^{\circ} \mathrm{C}$.

The resulting DNA fragment was ligated into plasmid pCR2.1 (Invitrogen). When the nucleotide sequence of the resulting DNA was determined, the sequence was observed to have locations that did not coincide with the cDNA nucleotide sequence of $\mathrm{BP} \# 40$. This is thought to be due to the occurrence of an error during PCR. The following procedure was carried out for the purpose of amplifying an error-free sequence.

In order to amplify a roughly 2 kb 5 '-untranslated region and a 200 bp translated region of $\mathrm{BP} \# 40$, PCR was carried out in $25 \mu 1$ of a reaction mixture using 200 ng of pansy genomic DNA as template and using 50 pmol of primer $\mathrm{BP} 40-\mathrm{i} 7$ (SEQ ID NO. 12) and 50 pmol of primer BP40 pro-F (5^{\prime}-ACT-CAAACAAGCATCTCGCCATAGG-3', SEQ ID NO. 3, sequence in 5^{\prime}-untranslated region of BP\#40 gene). After treating for 5 minutes at $98^{\circ} \mathrm{C}$., a reaction consisting of 20 seconds at $98^{\circ} \mathrm{C}$. and 15 minutes at $68^{\circ} \mathrm{C}$. was repeated for 30 cycles. The amplified DNA fragment was inserted into pCR2.1. This DNA fragment contained a roughly 2.1 kbp 5^{\prime}-untranslated region and a 200 bp translated region. This plasmid was designated pSFL614. The nucleotide sequence of plasmid pSFL614 is shown in SEQ ID NO. 14.

The roughly 2.1 bp 5 '-untranslated region (BP40pro, SEQ ID NO. 15) contained in pSFL614 was used to transcribe $\mathrm{BP} \# 40$ gene. At this time, the BamHI site was changed to NheI. After using 1 ng of pSFL 614 as template, adding 50 pmol of primer BP40pro-HindIII-F (5^{\prime}-AAG CTT GTG ATC GAC ATC TCT CTC C-3', SEQ ID NO. 16), 50 pmol of primer BP40pro-NehI-R (5'-CGA GGC TAG CTA AAC ACT TAT-3', SEQ ID NO. 17), and holding for 5 minutes at $98^{\circ} \mathrm{C}$. in 25μ of the reaction mixture, a reaction consisting of 20 seconds at $98^{\circ} \mathrm{C}$. and 15 minutes at $68^{\circ} \mathrm{C}$. was repeated for 25 cycles. The amplified DNA fragment was cloned into pCR2.1. This sequence was determined to be free of errors attributable to PCR by confirming the nucleotide sequence thereof. This plasmid was then digested with HindIII and NheI to obtain a 470 bp DNA fragment. This DNA fragment was designated fragment A.

After using 1 ng of pSLF614 as template, adding 50 pmol of primer BP40pro-NehI-F (5'-TTT AGC TAG CCT CGA AGT TG-3', SEQ ID NO. 18) and 50 pmol of primer BP40pro-BamHI-R (5'-GGA TCC CTA TGT TGA GAA AAA GGGACT-3', SEQ ID NO. 19) and Ex-Taq DNA polymerase, and holding for 5 minutes at $98^{\circ} \mathrm{C}$. in $25 \mu \mathrm{l}$ of the reaction mixture, a reaction consisting of 20 seconds at $98^{\circ} \mathrm{C}$. and 15 minutes at $68^{\circ} \mathrm{C}$. was repeated for 25 cycles. The amplified DNA fragment was cloned into pCR2.1. This sequence was determined to be free of errors attributable to PCR by confirming the nucleotide sequence thereof. This plasmid was then digested with HindIII and NheI to obtain a 630 bp DNA fragment. This DNA fragment was designated fragment B .

The larger fragment of DNA fragments formed by digesting plasmid pSPB567 described in Patent Document 4 with HindIII and NheI was recovered, and coupled with the aforementioned fragment A and fragment B to obtain pSFL 620.

After digesting pSFL620 with PacI, a roughly 3.2 kb DNA fragment was recovered. This DNA fragment was inserted into the Pad site of pBin+. The resulting plasmid was designated pSBP 3317 . A fragment obtained by digesting the aforementioned pSPB3311 with AscI and XbaI was cloned into the AscI and XbaI sites of pSBP3317, and the resulting plasmid was designated pSPB 3323 .
(5) Expression of Perilla Anthocyanin 3-Acyl

Transferase Genomic Gene and Pansy F3'5'H Gene in Chrysanthemum

The pSPB 3323 prepared in (4) above was introduced into Agrobacterium and chrysanthemum variety 94-765 (Seikoen, not sold) was transformed according to a known method using this Agrobacterium. Six transformed strains were acquired.

Anthocyanidins extracted according to the method described below were analyzed. Ray petals were frozen and then crushed followed by extracting 50 mg to 100 mg of the crushed petal with $500 \mu \mathrm{~L}$ of 1% hydrogen chloride-methanol, adding $500 \mu \mathrm{~L}$ of 4 N hydrochloric acid (HCl) to this extract and mixing, and hydrolyzing for 1 hour at $100^{\circ} \mathrm{C}$. After cooling the solution following hydrolysis, 1 ml of 0.05 M trifluoroacetic acid (TFA) was added and mixed therein. Next, this solution was added to Sep-Pak C18 (Millipore) to adsorb the hydrolysis product. The Sep-Pak C18 was preliminarily washed with 80% acetonitrile (MeCN) and equilibrated with 0.05 M TFA. After washing the hydrolysis product adsorbed to the Sep-Pak C18 with 0.05 M TFA , the hydrolysis product was further washed with $20 \% \mathrm{MeCN}$ and 0.05 M TFA followed by eluting the hydrolysis product with $80 \% \mathrm{MeCN}$ and 0.05 M TFA to obtain an analysis sample.

The analysis sample was analyzed under the following conditions using high-performance liquid chromatography. An Inertsil ODS-2 column (particle diameter: $5 \mu \mathrm{~m}, 4.6 \times 250$ mm , GL Sciences) was used for the column, the flow rate was $0.8 \mathrm{ml} / \mathrm{min}$, the mobile phase contained 1.5% phosphoric acid, and isocratic elution was carried out for 20 minutes using a linear concentration gradient from 5% acetic acid and 6.25% acetonitrile to 20% acetic acid and 25% acetonitrile, followed by eluting for 5 minutes with 25% acetonitrile containing 1.5% phosphoric acid and 20% acetic acid. Detection was carried out using the Agilent 1100 Series Diode Array Detector (GL Sciences) over a wavelength region of 250 nm to 600 nm , and the abundance ratios of each of the anthocyanidins was determined according to the area of optical absorbance at 530 nm .

As a result of analysis, delphinidin was detected at ratios of $0.9 \%, 0.8 \%, 1.4 \%$ and 0.6% of the total amount of anthocyanidins in transformants consisting of analyzed strains 1300-3, $1300-4,1300-5$ and $1300-6$, respectively. Although this suggests that $\mathrm{BP} \# 40$ transcriptional regulatory region of pansy governs transcription of BP\#40, this did not lead to a change in flower color.

Reference Example 5

Production of Delphinidin in Chrysanthemum Using Rugosa Rose DFR Promoter

A Rugosa rose Genomic DNA library was prepared in the manner described below using the λ BlueSTAR ${ }^{\mathrm{TM}}$ Xho I HalfSite Arms Kit (Novagen, on the Internet at merckbiosciences.com/product/69242). Chromosomal DNA was prepared from a young leaf of Rugosa rose using Nucleon Phytopure ${ }^{\text {TM }}$ (Tepnel Life Sciences). Roughly $100 \mu \mathrm{~g}$ of chromosomal DNA was digested with restriction enzyme Sau3AI.

This DNA fragment was then partially filled in with DNA polymerase I Klenow fragment (Toyobo) in the presence of dGTP and dATP, and fractionated by sucrose density gradient centrifugation. DNA of about 13 kb was recovered and concentrated by ethanol precipitation. Roughly 180 ng of DNA were ligated for 15 hours at $4^{\circ} \mathrm{C}$. with $1 \mu \mathrm{~L}$ of the λ Blue-

STAR ${ }^{\text {TM }}$ Xho I Half-Site Arms Kit, followed by carrying out in vitro packaging to obtain a genomic library.

This library was screened using cultivated rose DFR cDNA (Plant and Cell Physiology, 36, 1023-1031, 1995) to obtain plaque indicating a signal. Plasmid pSFK 710 was obtained by in vivo excision from this plaque using the method recommended by the manufacturer (Novagen). This plasmid contained a DNA sequence that closely coincided with the aforementioned cultivated rose DFR cDNA.

By carrying out PCR so as to obtain a 5 '-untranslated region of a DFR translated sequence from this plasmid and facilitate coupling with heterologous genes, one of the EcoRI recognition sequences was mutated to an NheI recognition sequence followed by the addition of HindIII and BamHI recognition sequences. First, PCR was carried out in $50 \mu \mathrm{~L}$ of the reaction mixture using pSLF710 as template, using 25 pmol each of primers DFRproHindIIIF (5'-TAATAAGCT-TACAGTGTAATTATC-3', SEQ ID NO. 20) and DFRproNheIR (5'-TTATGCTAGCGTGTCAAGACCAC-3', SEQ ID NO. 21), and using enzyme ExTaq DNA Polymerase (Toyobo). The PCR reaction conditions consisted of reacting for 5 minutes at $94^{\circ} \mathrm{C}$. followed by repeating 30 cycles of a reaction of which one cycle consists of reacting for 30 seconds at $94^{\circ} \mathrm{C}$., 30 seconds at $50^{\circ} \mathrm{C}$. and 30 seconds at $72^{\circ} \mathrm{C}$., and finally holding for 7 minutes at $72^{\circ} \mathrm{C}$. As a result, a roughly 350 bp DNA fragment A was obtained. Similarly, a PCR reaction was carried out in $50 \mu \mathrm{~L}$ of the reaction mixture using pSFL710 as template, using 25 pmol each of primers DFRproNheIF (5'-ACACGCTAGCATAAGTCTGTTG-3', SEQ ID NO. 22) and DFRproBamHI-R (5'-GCTTGGG-GATCCATCTTAGG-3', SEQ ID NO. 23), and using enzyme ExTaq DNA Polymerase (Toyobo). The PCR reaction conditions consisted of reacting for 5 minutes at $94^{\circ} \mathrm{C}$. followed by repeating 30 cycles of a reaction of which one cycle consists of reacting for 30 seconds at $94^{\circ} \mathrm{C}$., 30 seconds at $50^{\circ} \mathrm{C}$. and 30 seconds at $72^{\circ} \mathrm{C}$., and finally holding for 7 minutes at 72° C. As a result, a 600 bp DNA fragment B was obtained.

The pSPB567 described in Patent Document 4 (plasmid pUC containing CaMV35S promoter to which has been added E12 enhancer, pansy F3'5'HBP\#40 and nopaline synthase terminator) was digested with BamHI and then partially digested with HindIII to couple fragment A with a fragment digested with HindIII and NheI and couple fragment B with a fragment digested with NheI and BamHI and obtain plasmid pSLF721 (containing an expression cassette of R. rugosa DFR 5':BPF3'5'H\#40:nos3'. An expression cassette obtained by digesting this plasmid with Pad was introduced into the Pad site of pBinPLUS to obtain pSLF724. This plasmid was then transfected into Agrobacterium tumefaciens strain EHA105.
A recombinant chrysanthemum was obtained from variety 94-765 using this transformed Agrobacterium. The resulting strain produced delphinidin in the flower petals thereof at about 0.6% of the total amount of anthocyanidins.

In addition, other reference examples using Rugosa rose DFR promoter are shown in the second row from the top (pSPB3316 (Rugosa rose DFRpro:pansy \#40+rose ANSpro: torenia 5GT, non-delphinidin-producing strain) and in the fifth row from the top (Rugosa rose DFRpro:pansy \#40+ Japanese gentian 3'GTpro::torenia MT, maximum delphinidin production level: 0.9%) of Table 1. Neither of these reference examples resulted in a change in flower color.

Reference Example 6

Production of Delphinidin in Chrysanthemum Using Rugosa Rose F3H Promoter

The Rugosa rose genomic DNA library produced in Reference Example 5 was screened with torenia flavanone 3-hy-
droxylase (F3H) cDNA (NCBI No. AB211958) to obtain plaques indicating signals. One of these plaques was converted to a plasmid in the same manner as Reference Example 5. This was then digested with restriction enzyme SpeI to recover a 2.6 kb DNA fragment, and plasmid pSPB 804 was obtained by sub-cloning this DNA fragment to the SpeI site of pBluescript SKII-(Stratagene). This plasmid had a nucleotide sequence that demonstrates homology with F3H.

In order to amplify the 5 '-untranslated region of F3H, PCR was carried out in $50 \mu \mathrm{~L}$ of a reaction mixture by using 1 ng of pSPB 804 as template, using primer $\mathrm{RrF3H}-\mathrm{F}$ (5^{\prime}-AAGCT-TCTAGTTAGACAAAAAGCTA-3', SEQ ID NO. 24) and primer RrF3H (5^{\prime}-GGATCCTCTCTTGATATTTCCGTTC3', SEQ ID NO. 25), and using Ex-Taq DNA Polymerase (Toyobo). PCR reaction conditions consisted of reacting for 5 minutes at $94^{\circ} \mathrm{C}$., repeating 30 cycles of reaction of which one cycle consisted of 30 seconds at $94^{\circ} \mathrm{C}$., 30 seconds at 50° C. and 30 seconds at $72^{\circ} \mathrm{C}$., and finally holding for 7 minutes at $72^{\circ} \mathrm{C}$. The resulting DNA fragment was inserted into pCR-TOPO (Invitrogen) to obtain plasmid pSPB811. A roughly 2.1 kb F3H 5 '-untranslated region was able to be recovered from this plasmid using HindIII and BamHI. Plasmid pSFL814 (containing R. rugosa F3H $5^{\prime}: \mathrm{BFP}^{\prime} 5^{\prime} \nmid 440$:nos 3^{\prime}) was obtained by substituting the promoter portion of pSPB567 with the roughly 1.2 kb 5 '-untranslated region of F3H using HindIII and BamHI as described in Reference Example 5. This plasmid was intoduced into Agrobacterium tumefaciens strain EHA105.

Although three strains of recombinant chrysanthemum were obtained from variety $94-765$ using this transformed Agrobacterium, there were no strains in which production of delphinidin was observed in the flower petals (see Table 1).

Reference Example 7

> Production of pBINPLUS Rugosa Rose F3Hpro:ADHNF-Pansy-F3'5'H $\# 40::$ NOSter

A DNA fragment amplified by PCR using pSLF814 (Reference Example 6) as template and using ADH-BP40-Fd (5'-CAAGAAAAATAAATGGCAATTCTAGTCACCGAC3', SEQ ID NO. 26) and NcoI-BP40-Rv (5^{\prime}-CTCGAGCG-TACGTGAGCATC-3', SEQ ID NO. 27) as primers, and a DNA fragment amplified by PCR using pB1221 ADH-221 as template and using BamHI-ADH-Fd (5'-CGCGGATC-CGTCTATTTAACTCAGTATTC-3', SEQ ID NO. 28) and BP40-ADH-Rv (5'-TAGAATTGCCATTTATTTTTCT-TGATTTCCTTCAC-3', SEQ ID NO. 29) as primers were mixed, and a DNA fragment in which tobacco ADH-5'UTR 94 bp was directly coupled to the start codon of pansy F3'5'H\#40 was obtained by PCR using this mixture of DNA fragments as template and using BamHI-ADH-Fd (5'-CGCGGATCCGTCTATTTAACTCAGTATTC-3', SEQ ID NO. 30) and NcoI-BP40-Rv (5'-CTCGAGCGTACGTGAG-CATC-3', SEQ ID NO. 31) as primers.

After TA-cloning this DNA fragment to pCR 2.1 , a roughly 600 bp DNA fragment obtained by digesting with BamHI and NcoI and a binary vector fragment obtained by digesting pSFL814 with BamHI and NcoI were ligated to obtain pBinPLUS Rugosa rose F3Hpro:ADHNF-pansy-F3'5'H\#40:: Noster. This plasmid was introduced into Agrobacterium tumefaciens strain EHA105.

There were no individuals in which delphinidin was detected among four strains of transformants derived from
chrysanthemum variety $94-765$ obtained by using this transformed Agrobacterium (see Table 1).

Reference Example 8

Production of pBIN19 Rose

CHSpro:ADH-pansy-F3'5'H\#18::NOSter

A DNA fragment amplified by PCR using pB1221 ADH221 as template and using ADH KpnI Forward (5'-CGGTACCGTCTATTTAACTCAGTATTC-3', SEQ ID NO. 32) and GUS19R (5'-TTTCTACAGGACGTAACAT-AAGGGA-3', SEQ ID NO. 33) as primers was digested with KpnI and SmaI to obtain a roughly 110 bp tobacco ADH5'UTR DNA fragment. This DNA fragment was ligated with a binary vector DNA fragment obtained by digesting pBRBP18 (having an expression cassette of rose CHSpro:: pansy-F3'5'H\#18::NOSter inserted into pBIN19) with KpnI and SmaI to obtain pBIN 19 rose CHSpro::ADH-pansyF3'5'H\#18:NOSter. In this plasmid, a 38 bp spacer is present between tobacco ADH-5'UTR and pansy F3'5'H\#18. This plasmid was introduced into Agrobacterium tumefaciens strain EHA105.

30 strains of recombinant chrysanthemum derived from chrysanthemum variety $94-765$ were obtained using this transformed Agrobacterium. Delphinidin was detected in the petals of five of these strains and delphinidin content reached 1.9%. However, there were no changes in flower color observed.

Reference Example 9

Production of pBI121-rose
CHSpro::ADHNF-pansy-F3'5'H\#40::NOSter
A DNA fragment obtained by PCR using pBRBP18 (Reference Example 3) as template, using HAPS-RhCHSpro3kFd (5'-CCAAGCTTGGCGCGCCTTAATTAAATT-TAAATCAGCAAGAGTTGAAGAAATAG-3', SEQ ID NO. 85) and NS-RhCHSpro3k-Rv (5'-AAAGCTAGCACTAGT-CATCTCGGAGAAGGGTCG-3', SEQ ID NO. 86) as primers, and using Pyrobest Polymerase (Takara), and a binary vector fragment obtained by digesting with HindIII and NheI and digesting pBI121 ADHNF with HindIII and XbaI were ligated, and the resulting binary vector was designated pBI121-RhCHSp-GUS-NOSt.

An ADHNF-pansy-F3'5'H\#40 DNA fragment obtained by digesting the pCR-ADHBP40-SpeSac obtained in Example 10 with SpeI and EcoICRI was ligated to a binary vector fragment obtained by digesting pBI121-RhCHSp-GUSNOSt with SpeI and EcoICRI to obtain pBI121-rose CHSpro::ADHNF-pansy-F3'5'H\#40:: NOSter, which was used to transform Agrobacterium tumefaciens strain EHA105.

Although 19 strains of recombinant chrysanthemum derived from chrysanthemum variety 94-765 were obtained using this transformed Agrobacterium, there were no individuals in which delphinidin was detected.

Example 1

Cloning of the Promoter Region of Chrysanthemum Flavanone 3-Hydroxylase Gene

The cloned promoter region of the chrysanthemum flavanone 3-hydroxylase gene, $\mathrm{F} 3 \mathrm{Hpro1K}$, has the nucleic acid sequence depicted in SEQ ID NO: 34. A promoter region
having a different length was amplified in the manner described below. This portion of the chrysanthemum flavanone 3-hydroxylase gene, F 3 H pro500, has the nucleic acid sequence depicted in SEQ ID NO: 87.

A DNA fragment amplified by PCR using pBluescript SK-gF3H9 as template and using HANS-F3Hpro-500Fd (5'CCAAGCTTGGCGCGCCGCGGCCGCATTTAAAT
TACTGTTCGAACCTACAAAGG-3', SEQ ID NO. 83, underline indicates sequence that anneals with DNA containing F3H promoter region) and MX-F3Hpro-Rv (5 '-TTTCTA-GAACGCGTTTTTTATTTTTTCTTCACACACTTG-3',
SEQ ID NO. 84, underline indicates sequence that anneals with DNA containing F3H promoter region) as primers was cloned into pCR2.1 to obtain pCR HANS-CmF3Hpro500-X. In addition, a binary vector fragment obtained by digesting pBI121 ADHNF with HindIII and XbaI and a roughly 500 bp chrysanthemum F3H promoter DNA fragment obtained by digesting pCR HANS-CmF3Hpro500-X with HindIII and Xbal were ligated to obtain pBI121 HANS-CmF3Hp500-X.

Example 2

Production of pBI121 Chrysanthemum F3Hprolk::ADHNF-Bellflower F3'5'H::NOSter

Two types of primers consisting of CamF1 (5'-GT-GAAGCCACCATGTCTATAG-3', SEQ ID NO. 49) and CamR1 (5'-GCATTTGCCTAGACAGTGTAAG-3', SEQ ID NO. 50) were synthesized based on the translated sequence of F3'5'H cDNA (Accession No. D14590) of bellflower (Campanula medium) registered in the GenBank DNA database. RNA was extracted from the flower petals of commercially available bellflower buds using the RNeasy Mini Plant Kit (Qiagen), and 1st strand DNA was synthesized using an RTPCR kit. PCR was carried out using primers by using this 1st strand DNA as template. The resulting DNA fragment was cloned into pCR-TOPO II. The nucleotide sequence of the resulting clone \#4 (designated as pSPB 2561) was determined to be SEQ ID NO. 51.

A vector obtained by coupling tobacco ADH-5'UTR 94 bp and F3'5'H gene was constructed in the manner described below (FIG. 4). Furthermore, the same procedure was also carried out in the subsequently described examples.

Two types of DNA fragments consisting of a DNA fragment amplified by PCR using pSPB2561 as template and using ADH-Campa-Fd (5'-CAAGAAAAATAAATGTC-TATAGACATAACCATTC-3', SEQ ID NO. 53) and HpaI-Campa-Rv (5'-GTTAACATCTCTGGCACCACC-3', SEQ IDNO. 54) as primers and a DNA fragment amplified by PCR using pBI1 $121 \mathrm{ADH}-221$ as template and using XbaI-ADHFd (SEQ ID NO. 42) and Campa-ADH-Rv (5^{\prime}-GTCTATA-GACATTTATTTTTCTTGATTTCCTTCAC-3', SEQ ID NO. 55) as primers, were synthesized, and a DNA fragment in which tobacco ADH-5'UTR 94 bp is directly coupled to the start codon of bellflower F3'5'H was obtained by PCR using these two types of DNA fragments as templates and using XbaI-ADH-Fd (SEQ ID NO. 42) and HpaI-Campa-Rv (5'GTTAAC ATCTCTGGCACCACC-3', SEQ ID NO. 56) as primers. This DNA fragment was then TA-cloned into pCR2.1 followed by digesting with XbaI and HpaI, and the resulting roughly 650 bp fragment was ligated with a vector fragment obtained by digesting pSPB2561 with XbaI and Hpal to obtain pCR ADHNF-Campanula F3'5'H.

Next, pCR ADHNF-Campanula F3'5'H was digested with KpnI followed by blunting with Blunting High (Toyobo) and digesting with XbaI, and the resulting roughly 1.7 kb DNA fragment was ligated with a binary vector fragment obtained
by digesting pBI121 HANS-CmF3Hp1k-S with SpeI and EcoICRI to obtain pBI121 chrysanthemum F3Hpro1k:: ADHNF-bellflower F3'5'H::NOSter. This plasmid was introduced into Agrobacterium tumefaciens strain EHA105.

48 recombinant chrysanthemum strains of chrysanthemum variety $94-765$ were obtained by using this transformed Agrobacterium. Delphinidin was detected in the flower petals of 30 of these strains, and the delphinidin content reached 80.5%.
pSPB3738 was constructed from pBI121 chrysanthemum F3Hprolk::ADHNF-bellflower F3'5'H::NOSter. This plasmid was transfected into Agrobacterium tumefaciens strain AGL0, and this was then used to transform the chrysanthemum variety Sei Taitan (Seikoen). Among the resulting 26 strains of recombinant chrysanthemums, a change in flower color was observed in 6 strains, and delphinidin was able to be detected by thin layer chromatography.

Example 3

Production of pIG121-Hm-chrysanthemum F3Hpro1k::ADHNF-Lisianthus F3'5'H::NOSter

Eustoma F3'5'H gene (EgF3'5'H, GenBank AB078957) cloned into pBluescript SK- was digested with XhoI followed by blunting with Blunting High (Toyobo), and the roughly 1.9 kb EgF3'5'H DNA fragment obtained by further digesting with XbaI was ligated to a pIG121-Hm binary vector obtained by digesting with XbaI and EcoICRI to obtain pIG121-Hm 35S::EgF3'5'H.

Next, two types of DNA fragments consisting of a DNA fragment amplified by PCR using pBluescript SK-EgF3'5'H as template and using $\mathrm{ADH}-\mathrm{EgF} 3^{\prime} 5^{\prime} \mathrm{H}-\mathrm{Fd}$ (5^{\prime}-CAAGAAAAATAAAT GGCTGTTGGAAATGGCGTT-3', SEQ ID NO. 40) and HpaI-EgF3'5'H-Rv (5'-GTTAACGCT-GAGCCTAGTGCC-3', SEQ ID NO. 41) as primers, and a DNA fragment amplified by PCR using pBI221 ADH-221 (Satoh, J. et al. (2004), J. Biosci. Bioengineer) as template and using Xbal-ADH-Fd (5'-ACGCGTTCTAGAGTCTATT-TAACTCAGTATTC-3', SEQ ID NO. 42) and EgF3'5'H-ADH-Rv (5'-TCCAACAGCCATTTATTTTTTCT-TGATTTCCTTCAC-3', SEQ ID NO. 43) as primers, were mixed, and a DNA fragment in which tobacco ADH-5'UTR 94 bp (Satoh, J. et al. (2004), J. Biosci. Bioengineer) was directly coupled to the start codon of EgF3'5'H was obtained by PCR using the mixture of DNA fragments as template and using XbaI-ADH-Fd (SEQ ID NO. 42) and HpaI-EgF3'5'HRv (5'-GTTAACGCTGAGCCTAGTGCC-3', SEQ ID NO. 44) as primers. After cloning this DNA fragment into pCR2.1, a roughly 1.3 kb DNA fragment obtained by digesting with XbaI and HpaI and a binary vector fragment obtained by digesting pIG121-Hm 35S::EgF3'5'H with XbaI and HpaI were ligated to obtain pIG121-Hm 35S::ADHNF-EgF3'5'H. A roughly 1.2 kb EgF3'5'H DNA fragment obtained by digesting this pIG121-Hm 35S::EgF3'5'H with HindIII and XbaI, a roughly 15 kb binary vector DNA fragment, and a DNA fragment obtained by further digesting pCR HANS-CmF3Hp1k-MNS with HindIII and SpeI were ligated to obtain PIG121-Hm chrysanthemum F3Hprolk::ADHNF-lisianthus F3'5'H::NOSter. This plasmid was introduced into Agrobacterium tumefaciens strain EHA105.

Five recombinant chrysanthemum strains derived from chrysanthemum variety $94-765$ by using this transformed Agrobacterium. Delphinidin was detected in the flower petals of one of these strains, and the delphinidin content was 4.4%.

Example 4

Production of pBI121 Chrysanthemum F3Hpro1k: ADHNF-Lobelia F3'5'H::NOSter

F3'5'H gene derived from the flower petals of lobelia cloned into pBluescript SK- (LeF3'5'H1, GenBank ABS221077 and LeF3'5'H4, GenBank AB221078) was digested with KpnI followed by blunting with Blunting High (Toyobo), and a roughly 1.9 kb EgF3'5'H DNA fragment obtained by further digesting with XbaI was ligated to a pIG121-Hm binary vector fragment obtained by digesting XbaI and EcoICRI to obtain pIG121-Hm 35S::LeF3'S'H1 and pIG121-Hm 35S::LeF3'5'H4.

Next, two types of DNA fragments consisting of a DNA fragment amplified by PCR using pBluescript SK-LeF3'5'H1 or pBluescript SK-LeF3'5'H4 as template and using ADH-LeF3'5'H-Fd (5'-CAAGAAAATAAATGGACGCGA-CAWACATTGC-3', SEQ ID NO. 45) and Hpal-LeF3'5'H-Rv (5'-GTTAACATCTCGGGCAGCACC-3', SEQ ID NO. 46) as primers, and a DNA fragment amplified by PCR using pBI121 ADH-221 as template and using XbaI-ADH-Fd (SEQ ID NO. 42) and LeF3'5'H-ADH-Rv (5'-TGTCGCGTC-CATTTATTTTTCTTGATTTCCTTCAC-3', SEQ ID NO. 47) as primers, were mixed, and DNA fragments in which tobacco ADH-5'UTR 94 bp was directly coupled to the start codon of LeF3'5'H1 or LeF3'5'H4 were respectively obtained by using this mixture of DNA fragments as template and using XbaI-ADH-Fd (SEQ ID NO. 42) and HpaI-LeF3'5'HRv (5 '-GTTAACATCTCGGGCAGCACC-3', SEQ ID NO. 48) as primers.

After respectively TA-cloning these DNA fragments into pCR2.1, a DNA fragment obtained by digesting with XbaI and HpaI and a binary vector fragment obtained by digesting pIG121-Hm 35S::LeF3'5'H1 or pIG12'-Hm 35S::LeF3'5'H4 with XbaI and HpaI were respectively ligated to obtain pIG121-Hm 35S:: ADHNF-LeF3'5'H1 and pIG121-Hm $35 \mathrm{~S}:: \mathrm{ADHNF}-\mathrm{LeF} 3^{\prime} 5^{\prime} \mathrm{H} 4$. A roughly 2.6 kb ADHNFLeF3'5'H1::NOSter DNA fragment obtained by digesting these binary vectors with XbaI and EcoRV was ligated with a binary vector fragment obtained by digesting pBI 121 HANS$\mathrm{CmF3Hp} 1 \mathrm{k}-\mathrm{S}$ with SpeI and EcoICRI to obtain pBI121 chrysanthemum F3Hpro1kpro::ADHNF-loberia F3'5'H1:: NOSter and pBI121 chrysanthemum F3Hpro1kpro:: ADHNF-eustoma F3'5'H4::NOSter.

Although 12 strains of recombinant chrysanthemum derived from chrysanthemum variety $94-765$ were obtained by using Agrobacterium transformed with pBI 121 chrysanthemum F3Hprolkpro::ADHNF-loberia F3'5'H1::NOSter, there were no individuals obtained that contained delphinidin. In addition, although 34 strains of recombinant chrysanthemum derived from chrysanthemum variety 94-765 were obtained by using Agrobacterium transformed with pBI121 chrysanthemum F3Hpro1 kpro::ADHNF-loberia F3'5'H4:: NOSter, there were also no individuals obtained that contained delphinidin.

Example 5

Production of pBINPLUS Chrysanthemum F3Hprolk::ADHNF-Pansy-F3'5'H\#40::NOSter
pBinPLUS chrysanthemum F3Hpro1k::ADHNF-pansy F3'5'H\#40:: NOSter was obtained by ligating a roughly 1.1 kb chrysanthemum F3H promoter DNA fragment obtained by digesting pCR HANS-CmF3Hp1k-BclI with AscI and BclI, and a binary vector fragment obtained by digesting pBin-

PLUS Rugosa rose F3Hpro:: ADHNF-pansy F3'5'H\#40:: NOSter with Ascl and BamHI. This plasmid was introduced into Agrobacterium tumefaciens strain EHA105.
6 recombinant chrysanthemum strains derived from chrysanthemum variety 94-675 were obtained by using this transformed Agrobacterium. Delphinidin was detected in the flower petals of 4 of these strains, and the delphinidin content reached 26.8\%.

Example 6

Production of pBI121 Chrysanthemum
F3Hprolk::ADHNF-Cineraria F3'5'H:NOSter and Transformation into Chrysanthemum

Two types of DNA fragments consisting of a DNA fragment amplified by PCR using the cineraria F3'S'H (pSPB2774) obtained in Reference Example 2 as template and using ADH-ScF3'5'H-Fd (5'-CAAGAAAAATAAAT-GAGCATTCTAACCCTAATC-3', SEQ ID NO. 57) and NdeI-ScF3'5'H-Rv (5'-CATATGTTTAGCTCCA-GAATTTGG-3', SEQ ID NO. 58) as primers, and a DNA fragment amplified by PCR using $\mathrm{pBI} 121 \mathrm{ADH}-221$ as template and using XbaI-ADH-Fd (SEQ ID NO. 42) and ScF3'5'H-ADH-Rv (5'-TAGAATGCTCATTTATTTTTCT-TGATTTCCTTCAC-3', SEQ ID NO. 59) as primers, were mixed, and a DNA fragment in which tobacco ADH-5'UTR 94 bp was directly coupled to the start codon of cineraria F3'S'H was obtained by PCR using this mixture of DNA fragments as template and using XbaI-ADH-Fd (SEQ ID NO 42) and NdeI-ScF3'5'H-Rv (5'-CATATGTTTAGCTCCA-GAATTTGG-3', SEQ ID NO. 60) as primers. After TA-cloning this DNA fragment into pCR2.1, a DNA fragment obtained by digesting with XbaI and NdeI and a vector fragment obtained by digesting pSPB2774 with XbaI and NdeI were ligated to obtain $\mathrm{pBluescript} \mathrm{Sk}^{-}$ADHNF-cineraria F3'5'H.

Next, a roughly 1.7 kb DNA fragment obtained by digesting pBluescript Sk^{-}ADHNF-cineraria $\mathrm{F}^{\prime} 5^{\prime} \mathrm{H}$ with XbaI and XhoI and a vector fragment obtained by digesting pCR2.1 with XbaI and XhoI were ligated to obtain pCR 2.1 ADHNFcineraria F3'5'H. pBI121 chrysanthemum F3Hpro1k: ADHNF-cineraria F3'5'H:: NOSter was then obtained by ligating a DNA fragment obtained by digesting this pCR2.1 ADHNF-cineraria F3'5'H with XbaI and EcoRV with a binary vector fragment obtained by digesting pBI121 HANS-CmF3Hp1k-S with SpeI and EcoICRI. This plasmid was introduced into Agrobacterium tumefaciens strain EHA105.

50 recombinant strains derived from Chrysanthemum variety 94-765 were obtained by using this transformed Agrobacterium. Delphinidin was detected in the flower petals of 37 of these strains, and the delphinidin content reached 36.2%.

Example 7

Production of pBI121 Chrysanthemum F3Hpro1k::ADHNF-Japanese gentian F3'5'H::NOSter

Two types of DNA fragments consisting of a DNA fragment amplified by PCR using Japanese gentian F3'5'H cloned into pBluescript SK- (plasmid pG48 described in WO 2004/ 020637) as template and using ADH-Gentian-Fd (5'-CAA-GAAAAATAAATGTCACCCATTTACACCACCC-3', SEQ ID NO. 61) and Sall-Gentian F3'5'H-Rv (5'-GTCGACGC-TATTGCTAAGCC- ${ }^{\prime}$ ', SEQ ID NO. 62) as primers, and a DNA fragment amplified by PCR using $\mathrm{pBI} 121 \mathrm{ADH}-221$ as
template and using XbaI-ADH-Fd (SEQ ID NO. 42) and Gentian-ADH-Rv (5'-AATGGGTGACATTTATTTTTCT-TGATTTCCTTCAC-3', SEQ ID NO. 63) as primers, were mixed, and a DNA fragment in which tobacco ADH-5'UTR 94 bp was directly coupled to the start codon of Japanese gentian F3'5'H was obtained by using this mixture of DNA fragments as template and using XbaI-ADH-Fd (SEQ ID NO. 42) and Sall-Gentian F3'5'H-Rv (5'-GTCGACGCTAT-TGCTAAGCC-3', SEQ ID NO. 64) as primers. After TAcloning this DNA fragment into pCR2.1, a roughly 400 bp DNA fragment obtained by digesting with XbaI and Sall and a vector fragment obtained by digesting pG48 with XbaI and Sall were ligated to obtain pBluescript SK-ADHNF-Japanese gentian F3'5'H.

Next, a roughly 1.8 kb DNA fragment obtained by digesting pBluescript SK-ADHNF-Japanese gentian F3'S'H with XbaI and XhoI and a vector fragment obtained by digesting pCR 2.1 with XbaI and XhoI were ligated to obtain pCR 2.1 ADHNF-Japanese gentian F3'5'H. pBI112 chrysanthemum F3Hprolk::ADHNF Japanese gentian F3'S'H::NOSter was obtained by ligating a DNA fragment obtained by digesting this pCR2.1 ADHNF-Japanese gentian F3'S'H with XbaI and EcoRV and a binary vector fragment obtained by digesting pBI121 HANS-CmF3Hp1k-S with SpeI and EcoICRI. This plasmid was introduced into Agrobacterium tumefaciens strain EHA105.

Although 21 recombinant chrysanthemum strains derived from Chrysanthemum variety 94-765 were obtained by using this transformed Agrobacterium, there were no individuals obtained that contained delphinidin.

Example 8

Production of pBI121 Chrysanthemum F3Hpro1k::ADHNF-Verbena F3'5'H::NOSter

Two types of DNA fragments consisting of a DNA fragment amplified by PCR using verbena $\mathrm{F}^{\prime} 5^{\prime} \mathrm{h}^{\prime} \mathrm{H}$ cloned into pBluescript SK- (pHVF7, Plant Biotechnology, 23, 5-11, 2006, DNA database accession no. ABA234898) as template and using ADH-Verbena-Fd (5'-CAAGAAAAATAAAT-GACGTTTTCAGAGCTTATAAAC-3', SEQ ID NO. 65) and NcoI-Verbena F3'5'H-Rv (5'-CCATGGAGTAAATCAG-CATCTC-3', SEQ ID NO. 66) as primers, and a DNA fragment amplified by PCR using pBI121 ADH-221 as template and using XbaI-ADH-Fd (SEQ ID NO. 42) and Verbena ADH-Rv (5 '-TGAAAACGTCATTTATTTTTCT-TGATTTCCTTCAC-3', SEQ ID NO. 67) as primers, were mixed, and a DNA fragment in which tobacco ADH-5'UTR 94 bp was directly coupled to the start codon of verbena F3'S'H was obtained by PCR using the mixture of DNA fragments as template and using XbaI-ADH-Fd (SEQ ID NO. 42) and NcoI-Verbena F3'5'H-Rv (5'-CCATGGAGTAAAT-CAGCATCTC-3', SEQ ID NO. 68) as primers. After TAcloning this DNA fragment into pCR 2.1 , pBluescript SK-ADHNF-verbena F3'S'H was obtained by ligating a roughly 700 b DNA fragment obtained by digesting with XbaI and Ncol and a vector fragment obtained by digesting pHVF7 with XbaI and NcoI .

Next, a 1.8 kb DNA fragment obtained by digesting pBluescript SK-ADHNF-verbena F3'5'H with XbaI and XhoI and a vector fragment obtained by digesting pCR 2.1 with XbaI and XhoI were ligated to obtain pCR2.1 ADHNF-verbena F3'5'H. pBI121 chrysanthemum F3Hprolk::ADHNF-verbena F3'5'H::NOSter was then obtained by ligating a DNA fragment obtained by digesting this pCR2.1 ADHNF-verbena F3'S'H with XbaI and EcoRV and a binary vector fragment
obtained by digesting pBI121 HANS-CmF3Hk1k-S with Spel and EcoICRI. This plasmid was introduced into Agrobacterium tumefaciens strain EHA105.

17 recombinant chrysanthemum strains derived from chrysanthemum variety $94-765$ were obtained by using this transformed Agrobacterium. Delphinidin was detected in the flower petals of 11 of these strains, and the maximum delphinidin content was 28.4%.

Example 9

Production of pBI 121 Chrysanthemum F3Hpro1k::ADHNF-Blue Snapdragon F3'5'H: :NOSter

A cDNA library was produced using mRNA obtained from the bud of a type of snapdragon (Antirrhinum kelloggii, blue snapdragon) using the Uni-ZAP XR Vector Kit (Stratagene) in accordance with the method recommended by the manufacturer. This library was screened according to the method described in Reference Example 2 to obtain two types of plasmids pSPB3145 and pSPB3146 respectively containing F3'5'H cDNA \#1 (SEQ ID NO. 69) and F3'5'H cDNA \#12 (SEQ ID NO. 71).

Two types of DNA fragments consisting of a DNA fragment amplified by PCR using pSPB3145 or pSPB3146 as template and using ADH-AkF3'5'H-Fd (5'-CAA-GAAAAATAAATGCAGATAATAATTCCGGTCC-3', SEQ ID NO. 73) and NsiI-AkF3'5'H-Rv (5'-ATGCATGTC-CTCTAACATGTATC- 3^{\prime}, SEQ ID NO. 74) as primers, and a DNA fragment amplified by PCR using $\mathrm{pBI} 121 \mathrm{ADH}-221$ as template and using XbaI-ADH-Fd (SEQ ID NO. 42) and AkF3'5'H-ADH-Rv (5'-TATTATCTGCATTTATTTTTCT-TGATTTCCTTCAC-3', SEQ ID NO. 75) as primers, were mixed, and a DNA fragment in which tobacco ADH-5'UTR 94 bp was directly coupled to the start codon of blue snapdragon (Ak)F3'5'H \#1 or \#12 was respectively obtained by PCR using the mixture of DNA fragments as template and using XbaI-ADH-Fd (SEQ ID NO. 42) and Nsil-AkF3'5'HRv (5'-ATGCATGTCCTCTAACATGTATC-3', SEQ ID NO. 76) as primers. After TA-cloning this DNA fragment to pCR2.1, pBluescriptSK-ADHNF-AkF3'5'H \#1 and \#12 were obtained by respectively ligating a roughly 700 b DNA fragment obtained by digesting with XbaI and NsiI and a vector fragment obtained by digesting pSPB3145 (pBluescript SK-AkF3'S'H \#1) and pSBP3146 (pBluescript SK-AkF3'S'H \#12) with XbaI and NsiI.
Next, roughly 700 b DNA fragments obtained by digesting pBluescript SK-ADHNF-AkF3'S'H \#1 and \#12 with XbaI and XhoI were ligated with a vector fragment obtained by digesting pCR2.1 with XbaI and XhoI to obtain pCR2.1 ADHNF-AkF3'5'H \#1 and \#12. pBI121 chrysanthemum F3Hpro1k::ADHNF-AkF3'5'H\#1::NOSter and pBI121 chrysanthemum F3Hpro1k::ADHNF-AkF3'5'H\#12::NOSter were obtained by respectively ligating DNA fragments obtained by digesting these pCR2.1 ADHNF-AkF3'5'H \#1 and \#12 with XbaI and EcoRV with a binary vector fragment obtained by digesting pBI121 HANS-CmF3Hp1k-S with SpeI and EcoICRI. These plasmids were transfected into Agrobacterium tumefaciens strain EHA105.

1 strain of recombinant chrysanthemum derived from chrysanthemum variety $94-765$ was obtained by using this transformed Agrobacterium. Delphinidin was detected in the flower petals of this strain, and the delphinidin content reached 2.9%.

Example 10

Production of pBI121 Chrysanthemum F3Hpro500::ADHNF-Cineraria F3'5'H::NOSter

A binary vector DNA fragment obtained by digesting the pBI121 HANS-CmF3Hp500-X obtained in Example 1 with XbaI and EcoICRI and a DNA fragment of ADHNF-cineraria F3'5'H obtained by digesting the pCR2.1 ADHNF-cineraria F3'5'H obtained in Example 6 were ligated to obtain pBI121chrysanthemum F3Hpro500::ADHNF-cineraria F3'5'H:: NOSter, which was then introduced into Agrobacterium tumefaciens strain EHA105.

Seven stains of recombinant chrysanthemum derived from chrysanthemum variety Taihei were obtained by using this
transformed Agrobacterium. Delphinidin was detected in 5 of those strains, and delphinidin content reached 25.5%.

INDUSTRIAL APPLICABILITY

According to the present invention, chrysanthemum flower color can be changed to blue by using the transcriptional regulatory region of chrysanthemum-derived flavanone 3-hydroxylase (F 3 H), expressing flavonoid $3^{\prime} 5^{\prime}$-hydroxylase ($\mathrm{F}^{\prime} 5^{\prime} \mathrm{H}$) in chrysanthemum, and allowing a large amount of 0 delphinidin to accumulate in the flower petals. Although chrysanthemums come in flower colors including white, yellow, orange, red, pink and purplish red, since there are no existing varieties or closely related wild varieties that produce bluish flowers such as those having a purple or blue 5 color, blue chrysanthemums produced according to the method of the present invention will lead to stimulation of new demand.
TABLE 1

Accumulation of Delphinidin in Chrysanthemum Transformants Introduced with Various F3 ${ }^{\prime} 5^{\prime} \mathrm{H}$ Genes													
Gene Cassette 1 F3'5'H				Gene Cassette 2			No. of transformants	No. of individuals analyzed for aglycones	No. of individuals containing delphinidin	DelphinidinContent**			
		F3'5'H gene					Mean			Maximum			
Promoter	ADH enhancer*	origin	Terminator	Promoter	Gene	Terminator				(\%)	(\%)	Example No.	
Rugosa rose DFR	None	Pansy \#40	NOS					4	2	1	0.3	0.6	Ref. Ex. 5
Rugosa rose DFR	None	Pansy \#40	NOS	Rose ANS	Torenia 5GT	MAS	2	1	0	0.0	0.0	Ref. Ex. 5	
Rugosa rose F3H	None	Pansy \#40	NOS				3	3	0	0.0	0.0	Ref. Ex. 6	
Rugosa rose F3H	94 bp , direct coupled	Pansy \#40	NOS				4	2	0	0.0	0.0	Ref. Ex. 7	
Rugosa rose DFR	None	Pansy \#40	NOS	Gentian 3'GT	Torenia MT	MOS	5	4	4	0.7	0.9	Ref. Ex. 5	
Gerbera CHS	None	Pansy \#18	NOS				2	1	0	0.0	0.0		
Pansy \#40	None	Pansy \#40	NOS	$\begin{aligned} & \text { Perilla } \\ & 3 \mathrm{AT} \end{aligned}$	$\begin{aligned} & \text { Perilla } \\ & 3 \mathrm{AT} \end{aligned}$	Perilla 3AT	6	6	4	0.6	1.4	Ref. Ex. 4	
Rose CHS	None	Pansy \#18	NOS				11	10	5	1.3	5.4	Ref. Ex. 3	
Rose CHS	None	Pansy \#18	NOS	Rose CHS	Chrysanthemum F3'H IR	NOS	11	11	2	0.4	3.6	Ref. Ex. 3	
Rose CHS	94 bp , with spacer	Pansy \#18	NOS				30	29	5	0.2	1.9	Ref. Ex. 8	
Rose CHS	94 bp , direct coupled	Pansy \#40	NOS				19	19	0	0.0	0.0	Ref. Ex. 9	
CaMV35S	74 bp , with spacer	Pansy \#40	NOS				8	5	2	0.2	0.7		
CaMV35S	74 bp , with spacer	Bellflower	NOS				11	9	9	1.5	6.9		
Chrysanthemum F3H1k	94 bp , direct coupled	Gentian	NOS				21	19	0	0.0	0.0	Ex. 7	
Chrysanthemum F3H1k	94 bp , direct coupled	Lobelia \#1	NOS				12	11	0	0.0	0.0	Ex. 4	
Chrysanthemum F3H1k	94 bp , direct coupled	Lobelia \#4	NOS				34	20	0	0.0	0.0	Ex. 4	
Chrysanthemum F3H1k	94 bp, direct coupled	Blue snap-dragon	NOS				1	1	1	2.9	2.9	Ex. 9	
Chrysanthemum F3H1k	94 bp , direct coupled	Eustoma	NOS				5	5	1	0.9	4.4	Ex. 3	
Chrysanthemum F 3 H 500	94 bp , direct coupled	Cineraria	NOS				7	7	5	11.9	25.5	Ex. 10	
Chrysanthemum F3H1k	94 bp , direct coupled	Pansy \#40	NOS				6	5	4	14.9	26.8	Ex. 5	
Chrysanthemum F3H1k	94 bp , direct coupled	Verbena	NOS				17	12	11	8.9	28.4	Ex. 8	
Chrysanthemum F3H1k	94 bp , direct coupled	Cineraria	NOS				50	47	37	7.5	36.2	Ex. 6	
Chrysanthemum F3H1k	94 bp , direct coupled	Bellflower	NOS				48	39	30	31.4	80.5	Ex. 2	

*Length of S^{\prime} 'UTR of tobacco ADH gene and manner of coupling to start codon of $\mathrm{F} 3^{\prime} 5$ ' H gene
Ratio of delphinidin to total anthocyanidins during hydrolysis of anthocyanin accumulated in ray petals (wt $\%$) The number of transformants for which the delphinidin content was 0 was included when determining mean values.
$<160>$ NUMBER OF SEQ ID NOS: 87
$<210>$ SEQ ID NO 1
<211> LENGTH: 1096
$<212>$ TYPE: DNA
<213> ORGANISM: Perilla frutescens
<220> FEATURE:
<221> NAME/KEY: promoter
<222> LOCATION: (1)..(1096)
$<223>$ OTHER INFORMATION: anthocyanin 3-acyl transferase promoter
<400> SEQUENCE: 1
aactattatg atcccacaga gtttttgaca gatgagtctt caggaggaga tgctgaacct 60
tttcactact ctactgaacg catcacaagt ttatcggctt atatgactaa tagggatcaa 120
cttcacaaca gagaggctca tagagctctt aaagaggatt tgatcgagca catatggaaa 180
aattcggca ctaactaaat atataattta egttttatgc actcgtaatt taaaatttca 240
tgtgtctcat tgtagtttat ttaattatgt ttcactctt gtaatttta tttgttgtg 300
aagtaaatta tgaatttata attatatggg taatttttg ataattatgc aattaaaaat 360
aattaatatt ttttaaatgc aagagaaaaa tgttatttta ataacatgtt cttattaaaa 420
aataaaatga taaatatttt atgtaggttg ggagaaaatg aaaaataat attttattg 480
aaggttgggt tggatgaggt cactgatggg agtataaata atactccetc cgtcccataa 540
ttattgtcca ttattcettt ttgggatgtc ccaaaattat agtcctattc taaattggga 600
ttgtatttaa atattctttt acaaatataa ccctattga tatagtatga atgcaattaa 660
tatagtaaaa aataaggge aatataggat aattattgta aattgtatat ttccaataca 720
tattaatgt gatttcttaa tetgtgtgaa aataggaagt ggactataat tatgggacgg 780
agggagtata aagttggagg ttgtggatgt ggaggagaaa gaaattaata tttatttaa 840
agattggatt aaaggaggtc actgatgtgg gtagtcttag aggaaatgta gtcttagagg 900
aatctgccc agcaaataa aataataagt aataaataa actaatatg tattgaatgc 960
gacatctagc aatatagcea catatatagt gcagtagcac gcagcgctcg ttactcgtca 1020
gtcgtcaaag aatggtaagt atagaaaagc atctttaaat aacacaccaa aaaccacagc 1080
tacgttcaac accgcc 1096
<210> SEQ ID NO 2
<211> LENGTH: 4087
$<212>$ TYPE: DNA
<213> ORGANISM: Perilla frutescens
<220> FEATURE:
<221> NAME/KEY: CDS
$<222>$ LOCATION: (1097)..(2443)
$<223>$ OTHER INFORMATION: pSPB3311, anthocyanin 3-acyl transferase
promoter + CDS + terminator
$<400>$ SEQUENCE: 2
aactattatg atcccacaga gttttgaca gatgagtctt caggaggaga tgctgaacct 60
tttcactact ctactgaacg catcacaagt ttatcggctt atatgactaa tagggatcaa 120
cttcacaaca gagaggctca tagagctctt aaagaggatt tgatcgagca catatggaaa 180
aattcggca ctaactaaat atataattta cgttttatgc actcgtaatt taaaatttca 240
tgtgtctcat tgtagtttat ttaattatgt tttcactctt gtaatttta tttgttgtg 300
aagtaaatta tgaatttata attatatggg taatttttg ataattatgc aattaaaaat 360
aattaatatt ttttaatgc aagagaaaaa tgttatttta ataacatgtt cttattaaaa 420

$<210>$ SEQ ID NO 3
$<211>$ LENGTH: 448
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Perilla frutescens
$<400>$ SEQUENCE: 3


```
<210> SEQ ID NO 4
<211> LENGTH: 6835
<212> TYPE: DNA
<213> ORGANISM: Perilla frutescens
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (1608)..(2330)
<223> OTHER INFORMATION: Other ORF
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (3439) . . (4785)
<223> OTHER INFORMATION: SAT208 ORF
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (6815)..(6815)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 4
```

ccccaaaaac cttgattagg gtgatggttc acgtagtggg ccatcgccct gatagacggt

gctaactcac attaattgcg ttgcgctcac tgcccgcttt ccagtcggga aacctgtcgt	6665
gccagctgca ttaatgaatc ggccaacgcg cggggagagg cgggttgcgt attgggccgc	6725
tcttccgctt cottggttac togactcgct gcgctcggcc gtcggctgcg gcgagcggta	6785
tcaagctcac tcaaaggcgg taataccggn tatccacaga atcaggggat	6835

$<210>$ SEQ ID NO 5
$<211>$ LENGTH: 240
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Perilla frutescens
$<400>$ SEQUENCE: 5

$<210>$ SEQ ID NO 6
$<211>$ LENGTH: 448
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Perilla frutescens
$<400>$ SEQUENCE: 6

	50				55					60				
$\begin{aligned} & \text { Leu } \\ & 65 \end{aligned}$	Ser	Lys	Thr Leu	$\begin{aligned} & \text { Ile } \\ & 70 \end{aligned}$				Pro	$\begin{aligned} & \text { Leu } \\ & 75 \end{aligned}$	Ser	Cys	Asn		$\begin{aligned} & \text { Ile } \\ & 80 \end{aligned}$
Tyr	Pro	Ser	$\begin{gathered} \text { Ser Pro } \\ 85 \end{gathered}$	Glu	Lys			$\begin{aligned} & \text { Glu } \\ & 90 \end{aligned}$	Phe	Arg	Tyr I	Leu	$\begin{aligned} & \text { Ser } \\ & 95 \end{aligned}$	Gly
Asp	Ser	Val	$\begin{aligned} & \text { Ser Phe } \\ & 100 \end{aligned}$	Thr	Ile	Ala	$\begin{aligned} & \text { Gl } \\ & 10 \end{aligned}$		Ser	Asp	Asp	Phe 110	Asp	Asp
Leu	Val	$\begin{aligned} & \text { Gly } \mathrm{A} \\ & 115 \end{aligned}$	Asn Arg	Ala		$\begin{aligned} & \text { Ser } \\ & 120 \end{aligned}$		Val	Arg	Leu	$\begin{aligned} & \text { Tyr } \\ & 125 \end{aligned}$	Asn		Val
Pro	$\begin{aligned} & \text { Lys } \\ & 130 \end{aligned}$	Leu	Pro Gln	Ile	$\begin{aligned} & \text { Val } \\ & 135 \end{aligned}$	Glu	Gl	Ser	Asp	$\begin{aligned} & \text { Arg } \\ & 140 \end{aligned}$	LYs	Leu	Phe	Gln
$\begin{aligned} & \text { Val } \\ & 145 \end{aligned}$	Phe	Ala V	Val Gln	$\begin{aligned} & \text { Val } \\ & 150 \end{aligned}$	Thr	Leu	Ph	Pr	$\begin{aligned} & \text { Gly } \\ & 155 \end{aligned}$	Arg	Gly	Val	Gl_{Y}	$\begin{aligned} & \text { Ile } \\ & 160 \end{aligned}$
Gly	Ile	Ala	$\begin{array}{r} \text { Thr His } \\ 165 \end{array}$	His	Thr		Se	$\begin{aligned} & \text { Asp } \\ & 170 \end{aligned}$	Ala	Pro	Ser	Phe	$\begin{aligned} & \text { Leu } \\ & 175 \end{aligned}$	Ala
Phe	Ile		$\begin{aligned} & \text { Ala Trp } \\ & 180 \end{aligned}$	Ala	Trp		$\begin{aligned} & \text { Ser } \\ & 185 \end{aligned}$	Lys	His	Ile	Glu	$\begin{aligned} & \text { Asp } \\ & 190 \end{aligned}$	Glu	Asp
Glu	Glu	$\begin{aligned} & \text { Phe L } \\ & 195 \end{aligned}$	Lys Ser	Leu	Pro	Va 20		Asp	Arg	Ser	$\begin{aligned} & \text { Val } \\ & 205 \end{aligned}$	Ile	Lys	Tyr
Pro	$\begin{aligned} & \text { Thr } \\ & 210 \end{aligned}$	Lys	Phe Asp	Ser	$\begin{aligned} & \text { Ile } \\ & 215 \end{aligned}$		Trp	Lys	Lys	$\begin{aligned} & \text { Ala } \\ & 220 \end{aligned}$	Leu	Lys		Pro
$\begin{aligned} & \text { Leu } \\ & 225 \end{aligned}$	Gln	Ser A	Arg His	$\begin{aligned} & \text { Pro } \\ & 230 \end{aligned}$			Pr	Thr	$\begin{aligned} & \text { Asp } \\ & 235 \end{aligned}$	Arg	Ile	Arg	Thr	$\begin{aligned} & \text { Thr } \\ & 240 \end{aligned}$
Phe	Val	he T	$\begin{array}{r} \text { Thr Gln } \\ 245 \end{array}$	Ser	Glu		Ly	$\begin{aligned} & \text { Lys } \\ & 250 \end{aligned}$	Leu	Lys	Gly	Ser	$\begin{aligned} & \text { Ile } \\ & 255 \end{aligned}$	Gln
Ser	Arg	Val	$\begin{aligned} & \text { Pro Ser } \\ & 260 \end{aligned}$	Leu	Val	His	$\begin{aligned} & \text { Leu } \\ & 265 \end{aligned}$	Ser	Ser	Phe	Val	$\begin{aligned} & \text { Ala } \\ & 270 \end{aligned}$		Ala
Ala	Tyr	$\begin{aligned} & \text { Met } \\ & 275 \end{aligned}$	Trp Ala	Gly	Val	$\begin{aligned} & \text { ThI } \\ & 280 \end{aligned}$	Ly	Ser	Leu	Thr	$\begin{aligned} & \text { Ala } \\ & 285 \end{aligned}$	Asp	Glu	Asp
His	$\begin{aligned} & \text { Asp } \\ & 290 \end{aligned}$	Asp	Gly Asp	Ala	$\begin{aligned} & \text { Phe } \\ & 295 \end{aligned}$			Ile	Pro	$\begin{aligned} & \text { Val } \\ & 300 \end{aligned}$	Asp	Leu	Arg	Pro
$\begin{aligned} & \text { Arg } \\ & 305 \end{aligned}$	Leu	Asp P	Pro Pro	$\begin{aligned} & \text { Val } \\ & 310 \end{aligned}$	Pro	Glu	As	Tyr	$\begin{aligned} & \text { Phe } \\ & 315 \end{aligned}$	Gly	Asn	Cys	Leu	$\begin{aligned} & \text { Ser } \\ & 320 \end{aligned}$
Tyr	Ala	eu P	$\text { ro Arg } \begin{array}{r} 325 \end{array}$	Met	Arg	A	Arg	$\begin{aligned} & \text { Glu } \\ & 330 \end{aligned}$	Leu	Val	Gly	Glu	$\begin{aligned} & \text { Lys } \\ & 335 \end{aligned}$	Gly
Val	Phe	Leu	$\begin{aligned} & \text { Ala Ala } \\ & 340 \end{aligned}$	Glu	Ala	e		Ala	Glu	Ile	Lys	$\begin{aligned} & \text { Lys } \\ & 350 \end{aligned}$	Arg	Ile
Asn	Asp	$\begin{aligned} & \text { Lys A } \\ & 355 \end{aligned}$	Arg Ile	Leu	Glu	$\begin{aligned} & \text { ThI } \\ & 360 \end{aligned}$	Va	Glu	Lys	Trp	$\begin{aligned} & \text { Ser } \\ & 365 \end{aligned}$	Leu	Glu	Ile
Arg	$\begin{aligned} & \mathrm{Glu} \\ & 370 \end{aligned}$	Ala	Leu Gln	Lys	$\begin{aligned} & \text { Ser } \\ & 375 \end{aligned}$		Phe	Ser	Val	$\begin{aligned} & \text { Ala } \\ & 380 \end{aligned}$	Gly	Ser	Ser	Lys
$\begin{aligned} & \text { Leu } \\ & 385 \end{aligned}$	Asp	Leu	Tyr Gly	$\begin{aligned} & \text { Ala } \\ & 390 \end{aligned}$	Asp	Phe	Gly	Trp	$\begin{aligned} & \text { Gly } \\ & 395 \end{aligned}$	Lys	Ala	Arg	Lys	$\begin{aligned} & \mathrm{Gln} \\ & 400 \end{aligned}$
Glu	Ile	Leu S	$\begin{array}{r} \text { Ser Ile } \\ 405 \end{array}$	Asp	Gly	Glu	Ly	$\begin{aligned} & \text { Tyr } \\ & 410 \end{aligned}$	Ala	Met	Thr	Leu	$\begin{aligned} & \text { Cys } \\ & 415 \end{aligned}$	Lys
Ala	Arg	Asp	$\begin{aligned} & \text { Phe Glu } \\ & 420 \end{aligned}$	Gly	Gly	Leu	$\begin{aligned} & \mathrm{Gl} \\ & 42 \end{aligned}$	Val	Cys	Leu	Ser	$\begin{aligned} & \text { Leu } \\ & 430 \end{aligned}$	Pro	Lys
Asp	Lys	Met 435	Asp Ala	Phe	Ala		TYr	Phe	Ser	Ala	Gly	Ile	Asn	Gly

```
<210> SEQ ID NO 7
<211> LENGTH: }2
<212> TYPE: DNA
<213> ORGANISM: Artificial
```

```
<220> FEATURE:
<223> OTHER INFORMATION: HindIII containing primer
<400> SEQUENCE:7
```

aagcttaact attatgatcc cacagag 27

```
<210> SEQ ID NO 8
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: BamHI containing primer
<400> SEQUENCE: 8
```

ggatccggcg gtgttgaacg tagc

```
<210> SEQ ID NO 9
<211> LENGTH: }3
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer C1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: primer C1
<400> SEQUENCE: 9
```

gtacatattg tcgttagaac gcgtaatacg actca
$<210>S E Q$ ID NO 10
<211> LENGTH: 24
$<212\rangle$ TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
$<223>$ OTHER INFORMATION: Primer BP40-i5
<220> FEATURE:
$<221>$ NAME/KEY: misc_feature
<223 > OTHER INFORMATION: Primer BP40-i5
<400> SEQUENCE: 10
aggtgcatga tcggaccata cttc
$<210>$ SEQ ID NO 11
$<211>$ LENGTH: 35
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Primer C2
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<223>$ OTHER INFORMATION: Primer C2

```
<210> SEQ ID NO 12
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer BP40-i7
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Primer BP40-i7
<400> SEQUENCE: 12
```

```
<210> SEQ ID NO 13
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer BP40pro-F
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Primer BP40pro-F
<400> SEQUENCE: 13
```

actcaaacaa gcatctcgce atagg

```
<210> SEQ ID NO 14
<211> LENGTH: 2369
<212> TYPE: DNA
<213> ORGANISM: Viola x wittrockiana
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Plasmid pSFL614
<400> SEQUENCE: 14
```

actcaacaa gcatctcgcc aatggttctc taaatttct tctactctca tctcacgtgg 60
tttccgccaa tctgtctctg attacagcct tttcacatat gtcaaaggtt cagttagtgt 120
ttttgtcctt gtttatgtcg acgatataat cgttactggc aacaatctag atgccatttc 180
tgagactaaa caattcctcg caaattcatt ctctattaaa gatctcggca ctcttcgata 240
ttttcttgga atcgaagtat etcgttctac gaaaggtatt tettatgtc aacgaaaata 300
cactctcgat attctctcag attctggtca cettggatgt cgaccttctc catttcccat 360
ggagcaacat cttcatctac ttcetgatga tggtacacca ctacccgacc catccattta 420
tcgacgtctg gttggtcgac tactttactt gactgtcact egtcctgata ttcaatatgc 480
agtgaatact cttagtcaat tcatgcaact tcetcgttcg acccatctcg atgcggcaaa 540
tcgagttctc cgatatctca aaggatcagt tggtaagga atcotccttt cggccactag 600
tcctctttca cttgttggtt ttgctgattc tgactgggct ggttgtccaa ctactcgtcg 660
ttcaactact ggctacatta ccatgcttgg ttcaagtcct atctcttgga aaactaaaaa 720
gcaacccact gtctctcgat ettctgccga agccgaatat egatcactcg etgctctcac 780
ttcagagata cagtggettc attatctact ctcggatctc ggttttcccc ctcaacaacc 840
gattaccgtt cattgtgaca accaagctgc tatacacatc getaataatc cggttttcca 900
tgaacgaaca aagcacattg agctcgattg tcactttgtt cgtgaaaaaa ttatttctgg 960
tctcgtctcc accagttatt tgegttcctc agatcaactt getgatattt tcacaaaacc 1020
acttggtgca gatgcattta atcaccttat ttccaagttg ggcgtgatcg acatctctct 1080
cccggctcca acttgacggg gggtgttaaa cgtatacaag attttctaat cttgtatatt 1140
tgattttcta atatcttgta tatttgattt tctattatct tgtattgaa cttttgtatt 1200
tcettagtat caggaaagtt agttgtagat attattttat atttcaaatc tgtatctaat 1260
acttgcctat ataaaggcca actaatcaat gaaatgaaca catcaatttt ctcaatttct 1320
cattctctgt tttcatatct attctctatt ttcacatttt ctgaaaagaa agatgcttga 1380
catgatcaga gacagttctt tcttcttcat actttcgtac taaacttctc ctggtccgca 1440
actaatcttc catcatttc ttgtgatctt cacttgagga tagtctctag aaaacggcac 1500
ggtcacgctg gataagtgtt taggatccct cgaagttgag ttgcatgaat tttgcgggta 1560
cgcaagtgac ttgactctta tettggacgt ettatatgct egaccaaatg ttggccaagt 1620
cgggatgctc gggttaagcc tctcttaggt caagtttatg agcgaacccc tttctttgag 1680 ggctetttat thgceactc gtctgccatt aagttctat tagagctcta atgctgtgta 1740 tgtggctacc gatcacettc attctcagag gaatcctctt ttcgaattc tggtactttg 1800
aaactagctg cttcaatttc agccactcga attaaacact aaaacagaac attgagagga 1860
acgggccetc ttccaaatat agaaagaaac agataatgtc aaaagacaca tcaactaggt 1920
cgagatacct gctcacatgc atcacatcta accaactcga gtcggacgag aaatgagttc 1980
gtaactcgat gataataagg caaaggtcta aaaccacatt cggttggtgg ttgtgttcat 2040
ggaccgatca cgtgccetaa cetaaccccc gcatccatcc accaacagct agtcctcgcc 2100
gagtccccca aagttcctat ttatatcact aagtccott tttctcaaca tagacatgca 2160
aacacgagac aacatggcaa ttctagtcac cgacttcgtt gtcgeggeta taattttctt 2220
gatcactcgg ttcttagttc gttctctttt caagaaacca acccgaccgc tcccccoggg 2280
tcetctcggt tggecettgg tgggegcect ccetctccta ggcgccatgc ctcacgtcgc 2340
actagccaaa ctcgetaaga agtatggtc 2369
$<210>$ SEQ ID NO 15
$<211>$ LENGTH: 1102
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Viola x wittrockiana
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<223>$ OTHER INFORMATION: BP40pro
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (1)..(6)
$<223>$ OTHER INFORMATION: HindIII
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (1097).. (1102)
$<223>$ OTHER INFORMATION: BamHI
$<400>$ SEQUENCE: 15aagcttgtga tcgacatctc tctcccggct ccaacttgac ggggggtgtt aaacgtatac60
aagattttct aatcttgtat atttgatttt ctaatatctt gtatatttga tettctatta 120
tettgtattt gaacttttgt attecctag tatcaggaaa gttagttgta gatattatt 180
tatatttcaa atctgtatct aatacttgcc tatataagg ccaactaatc aatgaaatga 240
acacatcaat tttctcaatt tctcattctc tgtttcata tctattctct atttcacat 300
tttctgaaaa gaaagatgct tgacatgatc agagacagtt ctttcttctt catactttcg 360
tactaactt ctcetggtcc gcaactaatc ttccatcatt ttcttgtgat cttcacttga 420
ggatagtctc tagaaaacgg cacggtcacg ctggataagt gtttagctag cctcgaagtt 480
gagttgcatg aattttgcgg gtacgcaagt gacttgactc ttatcttgga cgtcttatat 540
gctcgaccaa atgttggcca agtcgggatg ctcgggttaa gcctctctta ggtcaagttt 600
atgagcgaac ccctttcttt gagggctctt tatttgccaa ctcgtctgcc attaaagttc 660
tattagagct ctaatgctgt gtatgtggct accgatcacc ttcattctca gaggaatcct 720
cttttcgaat ttctggtact ttgaaactag ctgcttcaat ttcagccact cgaattaaac 780
actaaacag aacattgaga ggaacgggcc ctcttccaaa tatagaaaga aacagataat 840
gtcaaaagac acatcaacta ggtcgagata cctgctcaca tgcatcacat ctaaccaact 900
cgagtcggac gagaaatgag ttcgtaactc gatgataata aggcaaaggt ctaaaaccac 960
attcggttgg tggttgtgtt catggaccga tcacgtgcce taacctaacc cccgcatcca 1020

```
tccaccaaca gctagtcctc gccgagtccc ccaaagttcc tatttatatc actaaagtcc 1080
cttttctca acatagggat cc 1102
```

$<210>$ SEQ ID NO 16
$<211>$ LENGTH: 25
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Primer BP 40 pro-HindIII-F
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<223>$ OTHER INFORMATION: Primer BP 4 Opro-HindIII-F
$<400>$ SEQUENCE: 16
aagcttgtga tcgacatctc tctcc
$<210>$ SEQ ID NO 17
$<211>$ LENGTH: 21
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Primer BP 40 pro-NheI-R
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<223>$ OTHER INFORMATION: Primer BP 4 Opro-NheI-R
$<400>$ SEQUENCE: 17
cgaggetagc taaacactta t
$<210>$ SEQ ID NO 18
$<211>$ LENGTH: 20
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Primer BP4Opro-NheI-F
$<220>$ FEATURE:
$<221>$ NAME/KEY: misC_feature
$<223>$ OTHER INFORMATION: BPpro-NheI-F
$<400>$ SEQUENCE: 18
tttagctagc ctcgaagttg
$<210>$ SEQ ID NO 19
$<211>$ LENGTH: 27
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Primer BP 40 Pro-BamHI-R
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<223>$ OTHER INFORMATION: Primer BP40pro-BamHI-R
$<400>$ SEQUENCE: 19
ggatccctat gttgagaaaa agggact 27
<210> SEQ ID NO 20

<211> LENGTH: 24

<212> TYPE: DNA

<213> ORGANISM: Artificial

<220> FEATURE:

<223> OTHER INFORMATION: DFRproHindIIIF

$<400>$ SEQUENCE: 20
taataagctt acagtgtaat tatc

```
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: DFRproNheIR
<400> SEQUENCE: 21
```

ttatgctagc gtgtcaagac cac
$<210>$ SEQ ID NO 22
<211> LENGTH: 22
<212> TYPE: DNA
$<213>$ ORGANISM: Artificial
<220> FEATURE:
$<223>$ OTHER INFORMATION: DFRproNheIF
$<400>$ SEQUENCE: 22
acacgctagc ataagtctgt tg 22
<210> SEQ ID NO 23
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
$<223>$ OTHER INFORMATION: DFRproBamHI-R
<400> SEQUENCE: 23
gcttggggat ccatcttagg
$<210\rangle$ SEQ ID NO 24
<211> LENGTH: 25
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer RrF3H-F
$<400>$ SEQUENCE: 24
aagettctag ttagacaaaa agcta
$<210>$ SEQ ID NO 25
$<211>$ LENGTH: 25
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Primer RrF3H-R
$<400>$ SEQUENCE: 25
ggatcctctc ttgatatttc egtec

```
<210> SEQ ID NO 26
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: ADH-BP4OFd
<400> SEQUENCE: 26
```

caagaaaaat aaatggcaat tetagtcacc gac

```
<210> SEQ ID NO 27
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: NCOI-BP40-RV
<400> SEQUENCE: 27
```

```
ctcgagcgta cgtgagcatc
```

```
<210> SEQ ID NO 28
```

<210> SEQ ID NO 28
<211> LENGTH: 29
<211> LENGTH: 29
<212> TYPE: DNA
<212> TYPE: DNA
<213> ORGANISM: Artificial
<213> ORGANISM: Artificial
<220> FEATURE:
<220> FEATURE:
<223> OTHER INFORMATION: BamHI-ADH-Fd
<223> OTHER INFORMATION: BamHI-ADH-Fd
<400> SEQUENCE: 28

```
<400> SEQUENCE: 28
```

cgeggatccg tetatttaac tcagtattc
$<210>$ SEQ ID NO 29
<211> LENGTH: 35
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
$<223>$ OTHER INFORMATION: BP40-ADH-Rv
<400> SEQUENCE: 29
tagaattgcc atttattttt ettgatttcc ttcac
<210> SEQ ID NO 30
<211> LENGTH: 29
<212> TYPE: DNA
$<213>$ ORGANISM: Artificial
<220> FEATURE:
$<223>$ OTHER INFORMATION: BamHI-ADH-Fd
$<400>$ SEQUENCE: 30
cgeggatceg tetattaac tcagtattc 29
$<210>$ SEQ ID NO 31
$<211>$ LENGTH: 20
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: NcoI-BP $40 R V$
$<400>$ SEQUENCE: 31
ctcgagcgta cgtgagcatc 20
$<210>$ SEQ ID NO 32
$<211>$ LENGTH: 27
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: ADH KpnI Forward
$<400>$ SEQUENCE: 32
cggtaccgtc tatttaactc agtattc

```
<210> SEQ ID NO 33
<211> LENGTH: }2
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: GUS19R
<400> SEQUENCE: 33
```

tttctacagg acgtaacata aggga 25
$<210>$ SEQ ID NO 34
$<211>$ LENGTH: 1047
$<212>$ TYPE: DNA
<212> TYPE. DNA

$<210>$	SEQ ID NO 35
$<211>$	LENGTH: 2346
$<212>$	TYPE $:$ DNA
$<213>$	ORGANISM: Chrysanthemum
$<220>$ FEATURE:	
$<221>$ NAME/KEY: misc_feature	
$<223>$	OTHER INFORMATION: pBluescript SK-F3H9 which contains Flavanone
	3 -hydroxylase (F3H) promoter
$<220>$ FEATURE:	
$<221>$ NAME/KEY: primer_bind	
$<222>$ LOCATION: (1092)..(1114)	
$<220>$ FEATURE:	
$<221>$ NAME/KEY: primer_bind	
$<222>$ LOCATION: (2114)..(2138)	
$<400>$ SEQUENCE: 35	

aagctttcgg gggatgaatt ettcgctacc acgtaattcc ccatggettt gagtctaact $\quad 60$
taaagactcg gtaataaaga aaagtgctct ttcgggagac aacccgaatt atccttttta 120
tttctttat ttcactttt gtttggtttt gtgtttttaa cattttgcag gaattggaga 180
agaattcaca agtgactaaa acggggacct gttctgtcca acagttacgg cgtaactcat 240
cctcatggtt acgecgtaac atatcctcag tagcgattct ctccaataca taaaccatta 300

ttaccacaat	tacagcttaa ctcctctttc	gggttacgtc gtaactatcc	tacaattcta	420
atttttccta	tattaacaca ataaccttgt	attagttttt aaatgaactt	tgcgggtatg	480
ttccatgtaa	gccetcatga gactacactc	gtccacttgg gacaccaagt	ggtttaaaat	540
gcttgttgca	tatgctaaat gcaaccgtga	ttcctacgaa agtgagttag	atttcttttt	600
gtttttgttt	ttatttttct ttttagaatt	tgcttgttg gttagtgtga	tatcagggaa	660
tgaagtttgc	tcgtggatge ttaagcaaag	gcacgattct ettcgtaggc	cttctttctt	720
tttaagagca	aatttcaggg aagttctcgc	tctaattcta ctttctcttc	acctttattt	780
aacgtttagt	acaaaaggga ctttgtacat	cttaagtggg ggggacggga	gtagaattat	840
tacttgaact	taattgccet cgtttttcta	gtttattttg aaaaattatg	ccatttttaa	900
aattttggca	tgtttttctt aagctaacta	gattagacct tagcogagca	ctttataacc	960
cttgatattt	tatggtgaga ttagctttat	cogtttctaa ttatttaccc	aaatccacta	1020
aattattaga	gtgtcggtag cttgtaaact	ttagaacttg gtctttgtgt	-gggaattgt	1080
cgagttgaag	attacaaaac catgtgcaag	aatgaagaaa gaagaaacaa	tgagggtcta	1140
atatgtaata	gttagcttag ettttctagt	aagctaaatt tagggttttt	atgtaacctc	1200
cctctcttat	ataaagaggg taggcgtcta	gggtttcggt attcctttcc	attatccttt	1260
tcattcatcc	tttcatttca tagtattcat	ctctaatgag agtctagaca	cacgatcata	1320
gcgtgtgtat	aatagttgta gtagtttttt	tgttttaatt aataaagaaa	accttattat	1380
tagtgatgtt	gattgtgttt ttaatcattc	cgctgttttc aatcaattga	tatcactcat	1440
accctagttg	agtcccgatc ttgttttcaa	caattggttt cagagcctcg	tggctctcga	1500
tctagggttt	ataagatttt catgtaatta	gggtttatac tetaattcat	ctattgcagc	1560
agatttgaaa	agaaaagagg cagcagatgg	ggaattgatc acatggctac	tgttcgaacc	1620
tacaaaggaa	tatcaatacg agggctcaat	tattgtctcg gattcaatga	attcacaagg	1680
taaataaacg	cggtactctt ttcattggtc	cttcgtttta tttgtttgac	aattaattgg	1740
gatggetggc	gtgtataatt ctcaatacat	gtctgattta atatgtgatt	ggttgacatt	1800
catgtgaaat	taatatactc atttatgat	tacaaagacc cacgatgtat	aattaattcc	1860
aatcttgtgg	aatgggatcc attgtgaacc	ggtgcatgat tgttacggtg	gggattactt	1920
ttgattggtt	cagcattatc atataacccc	cgttcaacgg atgcatgcta	cattggtacg	1980
tatacatata	cgattcacgt gtggtagttg	ataactagcg cgatacgccc	ccaccecata	2040
tttcttcaat	tttctctaca aatacccatg	ccaaccttac gaaacactca	ttccectcta	2100
ctcatagacg	caccaagtgt gtgaagaaaa	aataaaaat ggcacctata	tccttgaaat	2160
gggacgataa	ttegctgcat gaaaaccggt	tegtccgtga tgaggacgag	cggcetaagg	2220
tgccatacaa	caagtttacc aacgagattc	ccgttatctc acttaaggga	attgacgatg	2280
tggaagagag	tagcggtggt atcaaatcac	gtagggccga gatttgtgag	aagataataa	2340
aagctt				2346

```
<210> SEQ ID NO 36
<211> LENGTH: 55
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: HANS-F3Hpro1k-Fd
<400> SEQUENCE: 36
```

ccaagcttgg cgcgccgcgg cegcatttaa atttacaaaa ccatgtgcaa gaatg

```
<210> SEQ ID NO 37
<211> LENGTH:43
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: SNM-F3Hpro-Rv
<400> SEQUENCE: 37
```

actagtgcta gcacgcgttt tttatttttt cttcacacac ttg
$<210>$ SEQ ID NO 38
$<211>$ LENGTH: 43
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: NSM-F3Hpro-RV
$<400>$ SEQUENCE: 38
getagcacta gtacgegttt tttatttttt cttcacacac ttg
$<210>S E Q$ ID NO 39
<211> LENGTH: 34
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial
<220> FEATURE:
$<223>$ OTHER INFORMATION: BclI-CmF3Hp-RV
$<400>$ SEQUENCE: 39
ttttgatcat ttttattt ttcttcacac agtg

```
<210> SEQ ID NO 40
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: ADH-EgF3'5'H-Fd
<400> SEQUENCE: 40
```

caagaaaaat aaatggctgt tggaaatggc gtt
$<210>$ SEQ ID NO 41
$<211>$ LENGTH: 21
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: HpaI-EgF3'5'H-RV
$<400>$ SEQUENCE: 41
gttaacgetg agcetagtgc c
$<210>$ SEQ ID NO 42
$<211>$ LENGTH: 32
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE :
$<223>$ OTHER INFORMATION: XbaI-ADH-Fd
$<400>$ SEQUENCE : 42

```
<210> SEQ ID NO 43
<211> LENGTH: 35
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
```

$<223>$ OTHER INFORMATION: EgF3'5'H-ADH-RV
$<400>$ SEQUENCE: 43
<400> SEQUENCE: 43
tccaacagcc atttattttt cttgatttcc ttcac

```
<210> SEQ ID NO 44
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: HpaI-EgF3'5'H-Rv
<400> SEQUENCE: 44
```

gttaacgctg agcetagtgc c
<210> SEQ ID NO 45
<211> LENGTH: 32
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
$<223>$ OTHER INFORMATION: ADH-LeF3'5'H-Fd
<400> SEQUENCE: 45
caagaaaaat aaatggacgc gacawacatt gc
$<210\rangle$ SEQ ID NO 46
<211> LENGTH: 21
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: HpaI-LeF3'5'H-Rv
<400> SEQUENCE: 46
gttaacatct cgggcagcac c
<210> SEQ ID NO 47
<211> LENGTH: 35
$<212>$ TYPE: DNA
<213 > ORGANISM: Artificial
<220> FEATURE:
<223 > OTHER INFORMATION: LeF3'5'H-ADH-Rv
$<400\rangle$ SEQUENCE: 47
tgtcgegtcc atttattttt ettgatttcc ttcac

```
<210> SEQ ID NO 48
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: HpaI-LeF3'5'H-Rv
<400> SEQUENCE: 48
```

gttaacatct cgggcagcac c 21
$<210>$ SEQ ID NO 49
$<211>$ LENGTH: 21
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: CamF1
$<400>$ SEQUENCE : 49
gtgaagccac catgtctata g

```
<210> SEQ ID NO 50
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: CamR1
<400> SEQUENCE: 50
```

gcatttgcet agacagtgta ag

```
<210> SEQ ID NO 51
<211> LENGTH: 1585
<212> TYPE: DNA
<213> ORGANISM: Campanula medium
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Cline #4 pSPB2561
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (12)..(1577)
<400> SEQUENCE: 51
```

gtgaagccac c atg tct ata gac ata acc att ctc tta tgt gaa ctt gtt
Met Ser Ile Asp Ile Thr Ile Leu Leu Cys Glu Leu Val15010
get gea att tca ctc tac tha tha acc tac tat the att tgt toc ctc
Ala Ala Ile Ser Leu Tyr Leu Leu Thr Tyr Tyr Phe Ile Cys Phe Leu
152025
ttc aaa ccc tct cat cat cac cac cac ctc cet ccc ggc cca acc gga
Phe Lys Pro Ser His His His His His Leu Pro Pro Gly Pro Thr Gly
30 35 $\quad 35 \quad 40 \quad 45$
tgg cog atc att gga tcc ctt cct ctc tta ggc act atg cca cat gtt
Trp Pro Ile Ile Gly Ser Leu Pro Leu Leu Gly Thr Met Pro His Val
50 55 50
tcc tta gcc gac atg gcc gta aaa tac ggg cct ata atg tac cta aaa
$\begin{array}{cc}\text { Ser Leu Ala Asp Met Ala Val Lys Tyr Gly Pro Ile Met Tyr Leu Lys } \\ & 65 \\ 70\end{array}$
ctt ggt tca aag ggc acc gtc gtg gcc tca aat cca aaa gec gcc cga
Leu Gly Ser Lys Gly Thr Val Val Ala Ser Asn Pro Lys Ala Ala Arg
$\begin{array}{ll}80 & 85\end{array}$
gca ttc ttg aaa tcc cat gat gcc aat ttt tct aac cgt ccg att gat
$\begin{array}{cc}\text { Ala Phe Leu Lys Ser His Asp Ala Asn Phe Ser Asn Arg Pro Ile Asp } \\ 95 & 100 \\ 105\end{array}$
ggg ggg ccc acc tac ctc geg tat aat gca caa gac atg gtt ttt gca
Gly Gly Pro Thr Tyr Leu Ala Tyr Asn Ala Gln Asp Met Val Phe Ala
$\begin{array}{lrl}\text { Gly Gly Pro Thr Tyr Leu Ala Tyr Asn Ala Gln Asp Met val Phe Ala } \\ 110 & 115 & 120 \\ 125\end{array}$
gaa tat ggc cca aaa tgg aag ctt ttg cga aag cta tgt agc ttg cac
Glu Tyr Gly Pro Lys Trp Lys Leu Leu Arg Lys Leu Cys Ser Leu His
130135140
atg tta ggc ccg aag gca ctc gag gat tgg gct cat gtc aga gtt tca
Met Leu Gly Pro Lys Ala Leu Glu Asp Trp Ala His Val Arg Val Ser
gag gtc ggt cat atg ctc aaa gaa atg tac gag caa tcg agt aag tcc
Glu Val Gly His Met Leu Lys Glu Met Tyr Glu Gln Ser Ser Lys Ser
160165170
gtg cca gtg gtg gtg cca gag atg tta act tat gcc atg gct aat atg
$\begin{array}{lrr}175 & 180 & 185\end{array}$
att gga cga atc ata ctc agt cga cgc cct ttt gtt atc acg agc aaa
Ile Gly Arg Ile Ile Leu Ser Arg Arg Pro Phe Val Ile Thr Ser Lys
Ile Gly Arg Ile Ile Leu Ser Arg Arg Pro Phe Val Ile Thr Ser Lys
190
195
tta gac tcg tct gct tct get get tet gtt agt gaa ttc caa tat atg
Leu Asp Ser Ser Ala Ser Ala Ala Ser Val Ser Glu Phe Gln Tyr Met

Trp Pro Ile Ile Gly Ser Leu Pro Leu Leu Gly Thr Met Pro His Val 505560
tcc tta gcc gac atg gcc gta aaa tac ggg cct ata atg tac cta aaa8085
att gga cga atc ata ctc agt cga cge cct ttt gtt atc acg agc aaa
tta gac tcg tet get tet get get tet gtt agt gaa ttc caa tat atg Leu Asp Ser Ser Ala Ser Ala Ala Ser Val ser Glu Phe Gln Tyr Met

$<210>$ SEQ ID NO 52
$<211>$ LENGTH: 521
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Campanula medium
$<400>$ SEQUENCE: 52

Asp Met Ala Val Lys Tyr Gly Pro Ile Met Tyr Leu Lys Leu Gly Ser

Lys Gly Thr Val Val Ala Ser Asn Pro Lys Ala Ala Arg Ala Phe Leu	
85	90

Lys Ser His Asp Ala Asn Phe Ser Asn Arg Pro Ile Asp Gly Gly Pro	
Ily	
	105

$<210>$ SEQ ID NO 53
$<211>$ LENGTH: 34
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: ADH-Campa-Fd
$<400>$ SEQUENCE: 53
caagaaaaat aatgtctat agacataacc attc

```
<210> SEQ ID NO 54
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: HpaI-Campa-Rv
<400> SEQUENCE: 54
```

gttaacatct ctggcaccac c

```
<210> SEQ ID NO 55
<211> LENGTH: 35
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Campa-ADH-Rv
<400> SEQUENCE: 55
```

gtctatagac atttatttt cttgatttcc ttcac

```
<210> SEQ ID NO 56
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: HpaI-Campa-Rv
<400> SEQUENCE: 56
```

gttaacatct ctggcaccac c

```
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: ADH-ScF3'5'H-Fd
<400> SEQUENCE: 57
```

caagaaaaat aaatgagcat tctaacccta atc

```
<210> SEQ ID NO 58
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: NdeI-SCF3'5'H-RV
<400> SEQUENCE: 58
```

catatgttta getccagaat ttgg
<210> SEQ ID NO 59
<211> LENGTH: 35
<212> TYPE: DNA
$<213>$ ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: ScF3'5'H-ADH-Rv
<400> SEQUENCE: 59
tagaatgctc atttattttt cttgatttcc ttcac
$<210>$ SEQ ID NO 60
$<211>$ LENGTH: 24
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: NdeI-ScF3'5'H-Rv
$<400>$ SEQUENCE: 60
catatgttta gctccagaat ttgg
<210> SEQ ID NO 61
<211> LENGTH: 34
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
$<223>$ OTHER INFORMATION: ADH-Gentian-Fd
$<400>$ SEQUENCE: 61
caagaaaaat aaatgtcacc catttacacc accc
$<210>$ SEQ ID NO 62
$<211>$ LENGTH: 20
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: SalI-GentianF $3^{\prime} 5^{\prime} H-R V$
$<400>$ SEQUENCE: 62
gtcgacgcta ttgctaagcc 20

```
<210> SEQ ID NO 63
<211> LENGTH: 35
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Gentian-ADH-Rv
<400> SEQUENCE: 63
aatgggtgac atttattttt cttgatttcc ttcac
```

<210> SEQ ID NO 64
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: SalI-GentianF3'5'H-Rv
<400> SEQUENCE: 64

```
gtcgacgcta ttgctaagcc
\(<210\rangle\) SEQ ID NO 67
<211> LENGTH: 35
\(<212>\) TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
\(<223>\) OTHER INFORMATION: Verbena-ADH-Rv
<400> SEQUENCE: 67
tgaaaacgtc atttatttt cttgatttcc ttcac
\(<210>\) SEQ ID NO 68
\(<211>\) LENGTH: 22
\(<212>\) TYPE: DNA
\(<213>\) ORGANISM: Artificial
\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: NCOI-VerbenaF3'5'H-RV
\(<400>\) SEQUENCE: 68
ccatggagta aatcagcatc tc
\(<210>\) SEQ ID NO 69
\(<211>\) LENGTH: 1755
\(<212>\) TYPE \(:\) DNA
\(<213>\) ORGANISM: Antirrhinum kellogii
\(<220>\) FEATURE:
\(<221>\) NAME/KEY: misc_feature
\(<223>\) OTHER INFORMATION: F3'5'HCDNA\#1 pSPB3145
\(<220>\) FEATURE:
\(<221>\) NAME/KEY: CDS
\(<222>\) LOCATION: (73)..(1602)
\(<400>\) SEQUENCE: 69
ttcggcacga gggtaccttt agtatgttca atctctagtt ttttattaat cacaactcaa


\(<210>\) SEQ ID NO 70
\(<211>\) LENGTH: 510
\(<212>\) TYPE: PRT
\(<213>\) ORGANISM: Antirrhinum kellogii
\(<400>\) SEQUENCE: 70

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & 85 & & & & & 90 & & & & 95 & \\
\hline Leu & Asp & Thr & \[
\begin{aligned}
& \text { Asn } P \\
& 100
\end{aligned}
\] & Phe & & & & \[
\begin{aligned}
& \text { Pro } \\
& 105
\end{aligned}
\] & & & Ala Gly & \[
\begin{aligned}
& \text { Ala } \\
& \text { 110 }
\end{aligned}
\] & & His \\
\hline Leu & Ala & \[
\begin{aligned}
& \text { Tyr } \\
& 115
\end{aligned}
\] & & Ser & Gln & Asp & \[
\begin{aligned}
& \text { Met } \\
& 120
\end{aligned}
\] & Val & Phe & Ala & \[
\begin{array}{r}
\text { Ala Tyr } \\
125
\end{array}
\] & & Pro & Arg \\
\hline Trp & \begin{tabular}{l}
Arg \\
130
\end{tabular} & Leu & Leu A & Arg & Lys & \[
\begin{aligned}
& \text { Leu } \\
& 135
\end{aligned}
\] & Ser & Asn & Leu & His & \[
\begin{aligned}
& \text { Met Leu } \\
& 140
\end{aligned}
\] & Gly & Thr & Lys \\
\hline \[
\begin{aligned}
& \text { Ala } \\
& 145
\end{aligned}
\] & Leu & Asp & Asp T & Trp & Ala
\[
150
\] & \[
\operatorname{sn} V
\] & Val & \[
r g
\] & Val & \[
\begin{aligned}
& \text { Ser } \\
& 155
\end{aligned}
\] & Glu Val & Gly & yr & \[
\begin{aligned}
& \text { Met } \\
& 160
\end{aligned}
\] \\
\hline Leu & Glu & Asp & Met H & \[
\begin{aligned}
& \mathrm{His} \\
& 165
\end{aligned}
\] & Gly & Ala & ser & Gly & \[
\begin{aligned}
& \text { Arg } \\
& 170
\end{aligned}
\] & Gly & Glu Ala & & \[
\begin{aligned}
& \text { Gly } \\
& 175
\end{aligned}
\] & Val \\
\hline Pro & Gly & Met & \[
\begin{aligned}
& \text { Leu V } \\
& 180
\end{aligned}
\] & Val & Tyr & la & Met & \[
\begin{aligned}
& \text { Ala } \\
& 185
\end{aligned}
\] & Asn & Met & Ile Gly & \[
\begin{aligned}
& \mathrm{Gln} \\
& 190
\end{aligned}
\] & Val & Ile \\
\hline Leu & Ser & \[
\begin{aligned}
& \text { Arg } \\
& 195
\end{aligned}
\] & Arg V & Val & Phe &  & \[
\begin{aligned}
& \text { Thr } \\
& 200
\end{aligned}
\] & Arg & Gly & & \[
\begin{aligned}
& \text { Glu } \text { Leu } \\
& 205
\end{aligned}
\] & & Glu & Phe \\
\hline Lys & \[
\begin{aligned}
& \text { Asp } \\
& 210
\end{aligned}
\] & Met & Val Va & Val & & \[
\begin{aligned}
& \text { Leu I } \\
& 215
\end{aligned}
\] & & Thr & Ser & Ala & \[
\begin{aligned}
& \text { Gly Tyr } \\
& 220
\end{aligned}
\] & Phe & Asn & Ile \\
\hline \[
\begin{aligned}
& \text { Gly } \\
& 225
\end{aligned}
\] & Asp & Phe & Ile P & Pro & \[
\begin{aligned}
& \text { Ser } \\
& 230
\end{aligned}
\] & Phe & Ala & Trp & Met & \[
\begin{aligned}
& \text { Asp } \\
& 235
\end{aligned}
\] & Leu Gln & Gly & Ile & \[
\begin{aligned}
& \text { Glu } \\
& 240
\end{aligned}
\] \\
\hline Lys & Gly & Met & Lys & \[
\begin{aligned}
& \text { Gly } \\
& 245
\end{aligned}
\] & Leu & His & Lys & Lys & \[
\begin{aligned}
& \text { Phe } \\
& 250
\end{aligned}
\] & Asp & Asp Leu & Ile & \[
\begin{aligned}
& \text { Ser } \\
& 255
\end{aligned}
\] & Arg \\
\hline Met & Leu & Glu & \[
\begin{aligned}
& \text { Glu H } \\
& 260
\end{aligned}
\] & His & Leu & Ala S & Ser & \[
\begin{aligned}
& \text { Ala } \\
& 265
\end{aligned}
\] & His & Ile & Arg Lys & \[
\begin{aligned}
& \mathrm{Glu} \\
& 270
\end{aligned}
\] & Lys & Pro \\
\hline Asp & Phe & \[
\begin{aligned}
& \text { Leu } \\
& 275
\end{aligned}
\] & Asp V & Val & Ile & \[
\text { eu } \begin{array}{r}
A \\
2
\end{array}
\] & \[
\begin{aligned}
& \text { Ala } \\
& 280
\end{aligned}
\] & Asn & Arg & Asp & \[
\begin{aligned}
\text { Thr }
\end{aligned} \begin{aligned}
& \text { Leu } \\
& 285
\end{aligned}
\] & Glu & Gly & Glu \\
\hline Arg & \[
\begin{aligned}
& \text { Leu } \\
& 290
\end{aligned}
\] & Thr & Thr S & Ser & Asn & \[
\begin{aligned}
& \text { Ile I } \\
& 295
\end{aligned}
\] & Lys & Ala & Leu & Leu & \[
\begin{aligned}
& \text { Leu Asn } \\
& 300
\end{aligned}
\] & Leu & Phe & Thr \\
\hline \[
\begin{aligned}
& \text { Ala } \\
& 305
\end{aligned}
\] & Gly & Thr & Asp T & hr & \[
\begin{aligned}
& \text { Ser } \\
& 310
\end{aligned}
\] & er & Ser & hr & Ile & \[
\begin{aligned}
& \text { Glu } \\
& 315
\end{aligned}
\] & Trp Ala & & Ala & \[
\begin{aligned}
& \mathrm{Glu} \\
& 320
\end{aligned}
\] \\
\hline Met & Ile & Lys & Asn P & \[
\begin{aligned}
& \text { Pro } \\
& 325
\end{aligned}
\] & Ala & Ile & Leu & Lys & \[
\begin{aligned}
& \text { Lys } \\
& 330
\end{aligned}
\] & Ala & His Asp & Glu & \[
\begin{aligned}
& \text { Met } \\
& 335
\end{aligned}
\] & Asp \\
\hline Gln & Val & Val & \[
\begin{aligned}
& \text { Gly A } \\
& 340
\end{aligned}
\] & Arg & Asn & Arg A & Arg & \[
\begin{aligned}
& \text { Leu } \\
& 345
\end{aligned}
\] & Met & Glu & Ser Asp & Ile
\[
350
\] & Pro & Lys \\
\hline Leu & Pro & \[
\begin{aligned}
& \text { TYr } \\
& 355
\end{aligned}
\] & Leu & Gln & Ala & Ile & \[
\begin{aligned}
& \text { Cys } \\
& 360
\end{aligned}
\] & Lys & Glu & Ser & \[
\begin{array}{r}
\text { Phe Arg } \\
365
\end{array}
\] & Lys & His & Pro \\
\hline Ser & \[
\begin{aligned}
& \text { Thr } \\
& 370
\end{aligned}
\] & Pro & Leu A & Asn & Leu & \[
\begin{aligned}
& \text { Pro A } \\
& 375
\end{aligned}
\] & & & Ser & Ser & \[
\begin{aligned}
& \text { Gln Ala } \\
& 380
\end{aligned}
\] & Cys & Thr & Val \\
\hline \[
\begin{aligned}
& \text { Asn } \\
& 385
\end{aligned}
\] & Gly & Tyr & Tyr I & le & \[
\begin{aligned}
& \text { Pro } \\
& 390
\end{aligned}
\] & Lys & & & Arg & \[
\begin{aligned}
& \text { Leu } \\
& 395
\end{aligned}
\] & Asn Val & & Ile & \[
\begin{aligned}
& \text { Trp } \\
& 400
\end{aligned}
\] \\
\hline Ala & Ile & Gly & Arg & \[
\begin{aligned}
& \text { Asp } \\
& 405
\end{aligned}
\] & Pro & Asn V & Val & Trp & \[
\begin{aligned}
& \text { Glu } \\
& 410
\end{aligned}
\] & Asn & Pro Leu & Glu & Phe
\[
415
\] & Asn \\
\hline Pro & Asp & Arg & Phe M
\[
420
\] & Met & Ser & Gly I & Lys & \[
\begin{aligned}
& \text { Asn } \\
& 425
\end{aligned}
\] & Ala & Lys & Leu Asp & Pro 430 & Arg & Gly \\
\hline Asn & Asp & Phe
\[
435
\] & & Leu & Ile & Pro & Phe
\[
440
\] & Gly & Ala & Gly & \[
\begin{array}{r}
\text { Arg Arg } \\
445
\end{array}
\] & Ile & Cys & Ala \\
\hline Gly & \begin{tabular}{l}
Ala \\
450
\end{tabular} & Arg & Met & Gly & Ile & \[
\begin{aligned}
& \text { Val I } \\
& 455
\end{aligned}
\] & Leu & Val & Glu & Tyr & Ile Leu
\[
460
\] & Gly & Ser & Leu \\
\hline \[
\begin{aligned}
& \text { Val } \\
& 465
\end{aligned}
\] & His & Ser & & Asp & \[
\begin{aligned}
& \text { Trp } \\
& 470
\end{aligned}
\] & Lys I & Leu & Pro & Glu & \[
\begin{aligned}
& \mathrm{Gly} \\
& 475
\end{aligned}
\] & Val Lys & Glu & & \[
\begin{aligned}
& \text { Asn } \\
& 480
\end{aligned}
\] \\
\hline Leu & Asp & Glu & Ala & \begin{tabular}{l}
Phe \\
485
\end{tabular} & Gly & Leu & Ala & Leu & \[
\begin{aligned}
& \text { Gln } \\
& 490
\end{aligned}
\] & Lys & Ala Val & Pro & \[
\begin{aligned}
& \text { Leu } \\
& 495
\end{aligned}
\] & Ala \\
\hline Ala & Met & Val & \[
\begin{aligned}
& \text { Thr P } \\
& 500
\end{aligned}
\] & Pro & Arg & Leu & Pro & \[
\begin{aligned}
& \text { Ser } \\
& 505
\end{aligned}
\] & Asn & Cys & Tyr Ala & Pro
\[
510
\] & & \\
\hline
\end{tabular}
```

<210> SEQ ID NO 71
<211> LENGTH: 1811
<212> TYPE: DNA
<213> ORGANISM: Antirrhinum kellogii
<220> FEATURE.
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: F3'5'CDNA\#12 pSPB3146
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (86)..(1615)
<400> SEQUENCE: 71
gatactaaaa accatccaaa ttaagtacct ttagtatgtt caatctctag tttttttatt
aatcacaact caatagataa tcgtc atg cag ata ata att cog gtc ctc ctg 112
Met Gln Ile Ile Ile Pro Val Leu Leu
1 5
aag gag ctc acc gta gca gca tta ctc tat gtt ttc act aac att ctc
atc cgc tca ctt ctc aca aga ccc cgt cac cgt ctc ccg cca ggg cca
Ile Arg Ser Leu Leu Thr Arg Pro Arg His Arg Leu Pro Pro Gly Pro
aga ggc ttt cca gta gtc ggc gct ctt cca ctc cta ggc agc atg cca
Arg Gly Phe Pro Val Val Gly Ala Leu Pro Leu Leu Gly Ser Met Pro
45 50 55
cac gtg gcg ctc gcc aaa atg tcc aaa act tat ggt ccc gtc ata tac 304
His Val Ala Leu Ala Lys Met Ser Lys Thr Tyr Gly Pro Val Ile Tyr
60 65 70
cta aaa gta ggc gca cac ggc atg gca gtg gcc tca act cct gaa tcc 352
Leu Lys Val Gly Ala His Gly Met Ala Val Ala Ser Thr Pro Glu Ser
75 80 85
gcc aaa gcg ttc ctc aaa acc cta gac acc aac ttc tcc aac cgc ccg 400
Ala Lys Ala Phe Leu Lys Thr Leu Asp Thr Asn Phe Ser Asn Arg Pro
90 195 100 105
cca aat gcc ggt gcc act cac ctg gct tat aac tca caa gac atg gtg
Pro Asn Ala Gly Ala Thr His Leu Ala Tyr Asn Ser Gln Asp Met Val
110 115 120
ttt gcc gcc tac ggc cog agg tgg aga ttg ctt aga aag ttg agc aat
Phe Ala Ala Tyr Gly Pro Arg Trp Arg Leu Leu Arg Lys Leu Ser Asn
125 130 135
ctc cac atg ttg ggg act aag gct tta gac gat tgg gca aat gtt agg
208
gtt tcg gag gtt gga tac atg tta gag gac atg cat ggg gca agt ggc
cgc gga aag gtg gtg ggt gtg ccg ggg atg ttg gtg tac gca atg gct

```160Lys Glu Leu Thr Val Ala Ala Leu Leu Tyr Val Phe Thr Asn Ile Leu\(30 \quad 3540\)496544256304His Val Ala Leu Ala Lys Met Ser Lys Thr Tyr Gly Pro Val Ile Tyr\(60 \quad 65 \quad 70\)448Leu His Met Leu Gly Thr Lys Ala Leu Asp Asp Trp Ala Asn Val Arg140145150
592 Val Ser Glu Val Gly Tyr Met Leu Glu Asp Met His Gly Ala Ser Gly155160165640
Arg Gly Lys Val Val Gly Val Pro Gly Met Leu Val Tyr Ala Met Ala
\begin{tabular}{llll}
170 & 175 & 180 & 185
\end{tabular}aat atg ata gga cag gtg ata ctt agt cgg cgt gtt ttc gtg acg aga688Asn Met Ile Gly Gln Val Ile Leu Ser Arg Arg Val Phe Val Thr Arg190195200gaa gaa gaa ttg aac gag ttt aag gat atg gtg gtg gag ctc atg act736Glu Glu Glu\(\begin{array}{rrrr}205 & 210 & 215\end{array}\)tcg gct gga tat ttc aat att ggt gat ttt att ceg tct ttt gca tgg784Ser Ala Gly Tyr Phe Asn Ile Gly Asp Phe Ile Pro Ser Phe Ala Trp220225230


\footnotetext{
\(<210>\) SEQ ID NO 72
<211> LENGTH: 510
}
\(<212>\) TYPE: PRT
\(<213>\) ORGANISM: Antirrhinum kellogii
\(<400>\) SEQUENCE: 72


```

<210> SEQ ID NO 73
<211> LENGTH: 34
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: ADH-AkF3'5'H-Fd
<400> SEQUENCE: 73

```
caagaaaaat aaatgcagat aataattccg gtcc
\(<210>\) SEQ ID NO 74
\(<211>\) LENGTH: 23
\(<212>\) TYPE: DNA
\(<213>\) ORGANISM: Artificial
\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: NsiI-AkF3'5'H-RV
\(<400>\) SEQUENCE: 74
atgcatgtcc tetaacatgt atc
\(<210>\) SEQ ID NO 75
\(<211>\) LENGTH: 35
\(<212>\) TYPE: DNA
\(<213>\) ORGANISM: Artificial
\(<220>\) FEATURE :
\(<223>\) OTHER INFORMATION: AkF3'5'H-ADH-RV
\(<400>\) SEQUENCE: 75
tattatctgc atttattttt cttgatttcc ttcac
```

<210> SEQ ID NO 76
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: NsiI-AkF3'5'H-Rv
<400> SEQUENCE: 76

```
atgcatgtcc tetaacatgt atc
```

<210> SEQ ID NO 77
<211> LENGTH: 1667
<212> TYPE: DNA
<213> ORGANISM: Cineraria
<220> FEATURE:
<221> NAME/KEY: misc feature
<223> OTHER INFORMATION: Ci5a18
<220> FEATURE

```
```

<221> NAME/KEY: CDS
<222> LOCATION: (39) ..(1550)
<400> SEQUENCE: 77

```
gaattactaa ccaattctta cgttgtcaag taataaa atg agc att cta acc cta
Met Ser Ile Leu Thr Leu
156\(\begin{array}{cc}\text { Met Ser Ile Leu Thr Leu } \\ 1 & 5\end{array}\)
atc tgc acc ttc atc act ggt ttg atg ttc tat ggg ttg gtt aat ttg104
ctt agc cgt cge get agc cgt ctt cet cca ggt cca acc cca tgg cca152Leu Ser Arg Arg Ala ser Arg Leu Pro Pro Gly Pro Thr Pro Trp Pro253035200

atc atc ggc aac cta atg cac ctt ggt aaa ctt cca cat cac tcg ctg Ile Ile Gly Asn Leu Met His Leu Gly Lys Leu Pro His His Ser Leu\(4045 \quad 50\)
gcg gac ttg gcg aaa aag tat ggt ccg ttg ata cat gtc cga cta ggg ..... 248Ala Asp Leu Ala Lys Lys Tyr Gly Pro Leu Ile His Val Arg Leu Gly
55
tcc gtt gat gtt gtg gtg gcc tcg tct gcg tcc gtt gct ggg cag ttt
Ser Val Asp Val Val Val Ala Ser Ser Ala Ser Val Ala Gly Gln Phe758085tta aag gtg cac gat gcg aat ttt gcc aac agg cca cca aat tet gga344Leu Lys Val His Asp Ala Asn Phe Ala Asn Arg Pro Pro Asn Ser Gly9095100
get aaa cat atg gcg tat aat tat cat gat atg geg ttt geg cog tat
Ala Lys His Met Ala Tyr Asn Tyr His Asp Met Val Phe Ala Pro Tyr105110115
ggt cca agg tgg cga atg ctt cga aag atg tgc tcc atg cat ctg ttt 440
Gly Pro Arg Trp Arg Met Leu Arg Lys Met Cys Ser Met His Leu Phe
        \(120125 \quad 130\)
tct gcc aaa gca ctc act gat ttt cgt caa gtt cga cag gag gag gta
Ser Ala Lys Ala Leu Thr Asp Phe Arg Gln Val Arg Gln Glu Glu Val
\(1351140 \quad 145 \quad 150\)
atg ata ctc acg cgc gtt ttg gcc ggg act gaa caa tcg gca gtg aaa536Met Ile Leu Thr Arg Val Leu Ala Gly Thr Glu Gln Ser Ala Val Lys155 160 165
cta gat caa caa ctt aac gtg tgc ttc gca aac aca tta tcc cga atg584
Leu Asp Gln Gln Leu Asn Val Cys Phe Ala Asn Thr Leu Ser Arg Met 170175180
atg tta gac agg aga gta ttt gga gac ggt gat cca aag gcg gac gac632
atg tta gac agg aga gta ttt gga gac ggt gat cca aag gcg gac gac
Met Leu Asp Arg Arg Val Phe Gly Asp Gly Asp Pro Lys Ala Asp Asp
        \(\begin{array}{lll}185 & 190 & 195\end{array}\)
tac aag gat atg gtg gtt gag ttg atg act ttg gec gga caa ttc aac
680
Tyr Lys Asp Met Val Val Glu Leu Met Thr Leu Ala Gly Gln Phe Asn
        \(200 \quad 205 \quad 210\)
atc ggt gac tac att cet tgg ctt gac ttg ctt gac cta caa ggc att
Ile Gly Asp Tyr Ile Pro Trp Leu Asp Leu Leu Asp Leu Gln Gly Ile
215220225230
gtc aaa agg atg aag aaa gtt cat tct caa ttc gat tcg ttc ctt gac 776
Val Lys Arg Met Lys Lys Val His Ser Gln Phe Asp Ser Phe Leu Asp
    235240245
acc atc att gat gaa cat act att ggc acg ggc cgt cat gtt gac atg
Thr Ile Ile Asp Glu His Thr Ile Gly Thr Gly Arg His Val Asp Met
    \(250 \quad 255 \quad 260\)
tta agc aca atg att tca ctc aaa gat aat gcc gat gga gag gga ggg
Leu Ser Thr Met Ile Ser Leu Lys Asp Asn Ala Asp Gly Glu Gly Gly
        265
        270
                                    275
aag ctt tcg ttc atc gag atc aaa get ctt cta ctg aac tta ttc tca
Lys Leu Ser Phe Ile Glu Ile Lys Ala Leu Leu Leu Asn Leu Phe Ser

\(<210>\) SEQ ID NO 78
\(<211>\) LENGTH: 504
\(<212>\) TYPE : PRT
\(<213>\) ORGANISM: Cineraria
\(<400>\) SEQUENCE: 78


```

Ser Leu Gln Arg Val Gln Pro Leu Leu Val His Pro Arg Pro Arg Leu

485 \quad| 490 |
| ---: |

Ala Arg His Val Tyr Gly Thr Gly

```
\(<210>\) SEQ ID NO 79
\(<211>\) LENGTH: 8552
\(<212>\) TYPE: DNA
\(<213>\) ORGANISM: Cineraria
\(<220>\) FEATURE:
\(<221>\) NAME/KEY: misc_feature
\(<223>\) OTHER INFORMATION: gCio1-pBluestar
\(<400>\) SEQUENCE: 79
gcggccgcgg atcccgggaa ttctcgatcc agccatgtgt ctagtacaac catacagacg ..... 60
attaaaaaaa aaactttaaa ccacaaaacg ggttttgcaa acgaagaaat tgcctcaaaa ..... 120
catttccata tggagtttag ggacagagtg cgtttgctac attaaacaac tctttataa ..... 180
aaaaacatag cggtacgaga atgacccact aaccgttcat gtccattggc aaaagttact ..... 240
attgtgagtc ttgtatatac atttaaaaaa aaagaatata tcagttccat aaagggcctg ..... 300
aaacataagt aagaatatat caatgacgtt cggttcggtt tttggtttat ataaagagaa ..... 360
cttgatttga aaaattacga gaataacaaa tatttggggt gtcattttat aaaatatcaa ..... 420
aattttaaaa ctattttaca aaatgttaac aagtaagttg ttttttttt tttttcaca ..... 480
agcagttgaa acagtttttg ttgaacgtga agttatagct ttacttgaag tttgatattt ..... 540
tggcatcttg acactacatg tctttctagt gtgaccctta tcttacaact atcacatgtc ..... 600
aacggttttg tctgtccttt ggatagtata cggtctttgt tttaggacgt ctcgcatgtg ..... 660
tcctctctat ggtggtgggt tgatcgtatg aatcettagg atcgtagcca tttagaagga ..... 720
tttccgacat ggaatatcaa tcatgtatat gtacgtttat aattctcggc gttgaaccaa ..... 780
tgttgtgtcg aactcccgac atcgttcatt tccaaatgtg ttaaaactgt tgtaaggtgt ..... 840
gaacaaggta taccatattt ttgccaaact tgacaactgc attttttta tcatgttgtc ..... 900
acacacctca tacatttatc attaactggt atgactttcc atccaaactt gacaagctct ..... 960
taaccatttg gcgacatcta aactattcga tagtgactta attcgtaagt taatgcacaa ..... 1020
atgtcgacaa catattccgc gagtcgcatc tggtatggaa cacaaatgga tcaagagggc ..... 1080
taaaacccat gaggttagaa aattttactt ccaagttcaa gttcatttga tacaagcact ..... 1140
gcaaaatcat tetgcagact aatctaaatc ttattcttcc agagatgata agttagtttg ..... 1200
cagctcggtt tttatgtttt cttgatacgt ttatctgtag atgtgatcga aatgatagta ..... 1260
cacgcgctta ttttttgtag tcgtatcgca tatgttagtt aaaaagtctg aaactaactt ..... 1320
aaaagtttg tcattttgaa taggtggtag ttgaaaatta ggagtataag tttacaaggg ..... 1380
ttggtgttac ttaacaatct cctaatcttt aagtcattct tttgattttt cggcataaat ..... 1440
atatcgatga caatctccct acataaacgc gattttggtt aataacctga ggtagaaata ..... 1500
tggctggggg tggagaactt agtactatca caacaaaaac aggcgaacat gtggttagga ..... 1560
ggccacgggg caggccagct gggtcaaaaa acaggccgaa accacccatt atcattaccc ..... 1620
gagacagtgc caatacgttg cgggctcatg ccatggaggt tagcccaggg tgtgacattg ..... 1680
ttgagagctt agccactttt gctaggagga aacaacaagg gatttgggtg ctaagtgccg ..... 1740
ctggatttgt gagcaatgtt atgttgcgtc aacctggccc atcacaggct ggtacgggtt ..... 1800
ccgggcetat tgtcacactt catggccggt ttgagatttt atctttggtt ggttctgtat ..... 1860



\(<210>\) SEQ ID NO 80
\(<211>\) LENGTH: 5638
\(<212>\) TYPE : DNA
\(<213>\) ORGANISM: Cineraria
\(<220>\) FEATURE:
\(<221>\) NAME/KEY: misc_feature
\(<223>\) OTHER INFORMATION: PvuI-EcoRV fragment from gCiol-pBluestar
\(<220>\) FEATURE:
\(<221>\) NAME/KEY: exon
\(<222>\) LOCATION: (2652).. (3092)
\(<220>\) FEATURE:
\(<221>\) NAME/KEY: exon
\(<222>\) LOCATION: \((3618) \ldots(4046)\)
\(<220>\) FEATURE:
\(<221>\) NAME/KEY: exon
\(<222>\) LOCATION: \((4449) \ldots(5090)\)
\(<400>\) SEQUENCE: 80
cgacatcacc attgtgtcaa tggtgtttcg gatatttatg ggacgaccca acaaaacatg 60 ctttctaaca caaccctccc tcatcccgag atttatacct ggtcaacggc tcgaccattg 120 tccaaggcat aagttatgga aaagaaaaaa taaaaacat atagaaagta aacttttaaa 180 acttgtgtaa gcccaaattg tattactcaa gatcggcagg egatttacga cetcagttac 240 gtgtttaagc gtttgatatg taaactttta cgagcgaaaa atgatcaaga aaatttagtc 300
atatgaagtt agaagtcatt agattctgta atgtaatgta tgtttctggt atcaaaagtt 360
attatcagtt tgtgtttcta aatccttaac agaatcaata tgcattcgac ttacagtgat 420
taagacgatc atagaaggga ttatcgtcac aaaatttagt cagatactta tgaactgaca 480
aatccttta cagaatcaat atgcattaga cttacagtgc aaacatatac gccgagagct 540
aaaagcgacg gtgataagag tagaatcgta atttcacaga atcagcagac ttcttataaa 600
gaaaacacaa ctagaaatca agttcacaaa ctacttcatt tactaatctt tgatgttcaa 660
caagtcgttg gcgagggcat gggtacttcg gtaatttcac acaactcatg aatgttttta ..... 720
tgaagaaaac acttccaagt ataaaccaag ttctcaaact aatatgttca ctaatcaatg ..... 780840
ttcaaaccat tgaactaatc tttgcaata attctcttgc accaagatca tcgggtgaac ..... 900
gagaggtcca ctcctggtaa tggcgaagac taccagtgaa atctgtaaaa agcccgtcaa ..... 960
ggegtcaact cccattgtgt ctatccagta attgtattcc atatatgggc cttcacagaa ..... 1020
tttgaaatgc aagaactggt tttcattgcg aaatgtgtaa gggtgcagct gcaagtatta ..... 1080
gtaaaagacg ttcggtttga cttttgaggt caacacatag aaaaattcta ctccaatttt ..... 1140
actcgaagta atgtgatttt caggaaagat tacaaagaaa ctcgtaacat attaaatatg ..... 1200
ggacaatatt agtattaaga acttacccag attcaaatca gtttgaaaat ttgaaagtta ..... 1260
tatataaaga taaaatttga cctctcaagg tcaaacagag aaatccaact ccgtttatac ..... 1320
acaaccttaa cgaaatttta agaaaatatc aacgattacc aaaacagttc taacatgtta ..... 1380
acacgtggaa acgattcgtc tcttgagact aagtaaatta tatttacatt aatgtgtgat ..... 1440
tctgaaaaaa ggtcgtcaaa atatctatta aatctaatgt acctgtagat tatgggcgtg ..... 1500
agctcgggtt ttgagattgg gaggcgtttg aatgtagtta tctttcacag gaacaacagt ..... 1560
gtctttccat ggaccaatac cgacaacata ttctttgata tatttgaagt aacgatctga ..... 1620
agtgatttct gcatacgtct gcaaatgaaa aagaaatcag attataaaca tccattgcaa ..... 1680
actatccttg catcgtgttt ggatgttcgt tttaagcgag tattttatgg aatagggaga
1800
tgataataga aaacatttag tcttcggaaa attatataaa ttaccaaaaa tgggtttaac ..... 1860
tgtttcaaac caaaagtggc aagatgtcag gtcggatgga ttgggtaacg ggtcaaaatg ..... 1920
ggttggactg aaacatgttc aaacatagcg cgtaggccgt agagattaca aaaattctcc ..... 19802040
cttttccggt atgcataaaa aactgacgac ggacattaca ctatataaaa atttagaagg ..... 2100
ttataataaa ccaagaaaat ataattgtat taaattgtgt gagttatatg aattacatag
\begin{tabular}{|c|c|}
\hline at atatggttga attaccttgc tgaacaagaa acctaaacct attagaaatg & 2220 \\
\hline tctcaaaat cctaagcttc aggaatacct tcccggcett agcgacgagg aagatatgct & 2280 \\
\hline agagtgtatg tgtgactcgt taaatcatg aactagaaca aagggaaagg aacaatgtta & 2340 \\
\hline caatctcaat gattagatag gatataactc gataacaaac ctaaccagca gagttagatc & 2400 \\
\hline aagtggtaag tetttgcctt tgaagacata ggtcgagggt tcgatcctca ctccatgtgg & 2460 \\
\hline tcggaggttt attggtgaat gcatgcttag ctaccgttca aagtaacttt attggtgaat & 2520 \\
\hline gcatgcttag ctaccgttca aaatcttcaa aaagggtaat tatgtctaat atgccatcta & 2580 \\
\hline agttctaacc aaccettcaa atgttcattc ctataattac taaccaattc ttacgttgtc & 2640 \\
\hline ```
aagtaaataa a atg agc att cta acc cta atc tgc acc ttc atc act ggt
    Met Ser Ile Leu Thr Leu Ile Cys Thr Phe Ile Thr Gly
    1 5 10
``` & 2690 \\
\hline ttg atg ttc tat ggg ttg gtt aat ttg ctt agc cgt cgc gct agc cgt & 2738 \\
\hline Leu Met Phe Tyr Gly Leu Val Asn Leu Leu Ser Arg Arg Ala Ser Arg 152025 & \\
\hline ctt cet cca ggt cca acc cea tgg cea atc atc gge aac cta atg cac & 2786 \\
\hline Leu Pro Pro Gly Pro Thr Pro Trp Pro Ile Ile Gly Asn Leu Met His & \\
\hline 30454045 & \\
\hline ctt ggt aaa ctt cca cat cac tog ctg gcg gac ttg gcg aaa aag tat & 2834 \\
\hline \(\begin{array}{cc}\text { Leu Gly Lys Leu Pro His His Ser Leu Ala Asp Leu Ala Lys Lys Tyr } \\ & 50 \\ 50\end{array}\) & \\
\hline ggt cog ttg ata cat gtc cga cta ggg tec gtt gat gtt gtg gtg gec & 2882 \\
\hline Gly Pro Leu Ile His Val Arg Leu Gly Ser Val Asp Val Val Val Ala & \\
\hline tcg tct gcg tcc gtt gct ggg cag ttt tta aag gtg cat gat gcg aat & 2930 \\
\hline \[
\begin{array}{cc}
\text { Ser Ser Ala Ser Val Ala Gly Gln Phe Leu Lys Val His Asp Ala Asn } \\
80 & 85
\end{array}
\] & \\
\hline ttt gcc aac agg cca cca aat tct gga gct aaa cat atg gcg tat aat & 2978 \\
\hline \[
\begin{gathered}
\text { Phe Ala Asn Arg Pro Pro Asn Ser Gly Ala Lys His Met Ala Tyr Asn } \\
95 \\
\hline 100
\end{gathered}
\] & \\
\hline tat cat gat atg gtg ttt gcg ccg tat ggt cca agg tgg cga atg ctt & 3026 \\
\hline Tyr His Asp Met Val Phe Ala Pro Tyr Gly Pro Arg Trp Arg Met Leu & \\
\hline 110115120125 & \\
\hline cga aag atg tgc tcc atg cat ctg ttt tct gcc aaa gca ctc act gat & 3074 \\
\hline \(\begin{array}{rl}\text { Arg Lys Met Cys Ser Met His Leu Phe Ser Ala Lys Ala Leu Thr Asp } \\ 130 & 135\end{array}\) & \\
\hline ttt cgt caa gtt cga cag gttttgtact ttcactttcg tcatatatat & 3122 \\
\hline \[
\begin{aligned}
& \text { Phe Arg Gln Val Arg Gln } \\
& 145
\end{aligned}
\] & \\
\hline agggagatta gtacgagaac gaacactttt aaaatcactt tttaataatc aaaatatctt & 3182 \\
\hline tttttttta a caaaatca tggaatctta ttcaaataac ttttctaacc ttctaaattt & 3242 \\
\hline ttttaattt tttaatttt tttttactta cagtgattaa gataatcaca taaaatatat & 3302 \\
\hline agataatcac atgaaatttt ttgtgattat ttagttcaaa tacattatta tcgatatatt & 3362 \\
\hline ttttgtgatt atcttaacca ccgtaaaaaa aattcaaaaa taaaataaaa tctgagaagg & 3422 \\
\hline ttaaaaagt tatataaata agattttcog attttgtttt caacaataaa ataaaatttc & 3482 \\
\hline agaacgtaat aaaattgat tttttgttaa cgagagtttg taacaataga cggtcaacgg & 3542 \\
\hline aaaatgtgta ttatctggtg gtatcaccat cggattatgc caagcatgca taaaaaaca & 3602 \\
\hline aatcgtaac tacag gag gag gta acg ata ctc acg cgc gtt ttg gcc agg Glu Glu Val Thr Ile Leu Thr Arg Val Leu Ala Arg 150155 & 3653 \\
\hline act gga caa tcg gca gtg aaa cta gat caa caa ctt aac gtg tgc ttc Thr Gly Gln Ser Ala Val Lys Leu Asp Gln Gln Leu Asn Val Cys Phe & 3701 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Asn Val Glu Val Lys Pro Asn Asp Phe Glu Ile Val Pro Phe Gly Gly \begin{tabular}{c}
425 \\
420
\end{tabular} & \\
\hline gga cga agg att tgt gca ggt atg agc ctc gga ttg aga atg gtc aat & 4925 \\
\hline \(\begin{array}{rl}\text { Gly Arg Arg Ile Cys Ala Gly Met Ser Leu Gly Leu Arg Met Val Asn } \\ 435 & 440\end{array}\) & \\
\hline ttg ctt att gca aca ttg gtt caa gce ttt gat tgg gaa ttg gct aat & 4973 \\
\hline Leu Leu Ile Ala Thr Leu Val Gln Ala Phe Asp Trp Glu Leu Ala Asn & \\
\hline 450455460465 & \\
\hline ggg tta gag cca gaa aag ctt aac atg gaa gaa gtg ttt ggg att agc & 5021 \\
\hline \begin{tabular}{rl}
Gly Leu Glu Pro Glu Lys Leu Asn Met Glu Glu Val Phe Gly \\
470 & 475 \\
480
\end{tabular} & \\
\hline ctt caa agg gtt caa ccc ttg ttg gtg cac cog agg coa agg tha gcc & 5069 \\
\hline Leu Gln Arg Val Gln Pro Leu Leu Val His Pro Arg Pro Arg Leu Ala & \\
\hline cgt cac gta tac gga acg ggt taaggaaata aactgtetgt ttgtaagatg & 5120 \\
\hline \[
\begin{aligned}
& \text { Arg His Val Tyr Gly Thr Gly } \\
& 500
\end{aligned}
\] & \\
\hline aatctgtttg aatttatgta ttaatagtt atgctaagaa ctatttttac aaataaaagt & 5180 \\
\hline atattggttt gattgttctc gettagcett tgctaaatct tagatagatg agttgtataa & 5240 \\
\hline cacatcatca ttaactcaca tcacgtggta acgatttgtt tttgagttaa aatttttaaa & 5300 \\
\hline gaaaggaaag aaagagaaag taaatataaa aaaatttgtg ttcccgagaa gttttttacg & 5360 \\
\hline aaggaagagg ggagaaagag agagaatttt agagaaattt tgagtatttt acaacaaaaa & 5420 \\
\hline tcatcctctc atttttggga tgatttggag gatctttttt ctttcttttc cttcgtccac & 5480 \\
\hline ttcacctccc tttctttcca aaaaatctc ggaaacatag egtaatgata aacaaaaacc & 5540 \\
\hline aataaaaatg agcaggagca aaccctagaa ggacgaaatc ttgaaaattt attctaagat & 5600 \\
\hline ttttaaaaa aacttggcag ttggaaaggg cggcggat & 5638 \\
\hline
\end{tabular}
\(<210>\) SEQ ID NO 81
\(<211>\) LENGTH: 20
\(<212>\) TYPE: DNA
\(<213>\) ORGANISM: Artificial
\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: forward primer Ci5a18F1
\(<400>\) SEQUENCE: 81
catctgtttt ctgccaaagc
\(<210>\) SEQ ID NO 82
\(<211>\) LENGTH: 19
\(<212>\) TYPE: DNA
\(<213>\) ORGANISM: Artificial
\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: reverse primer Ci5a18R1
\(<400>\) SEQUENCE: 82
ggattaggaa acgaccagg
```

<210> SEQ ID NO 83
<211> LENGTH: 53
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer HANS-F3Hpro500-Fd
<400> SEQUENCE: 83

```
```

<210> SEQ ID NO }8
<211> LENGTH: }3
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer MX-F3Hpro-Rv
<400> SEQUENCE: 84

```
tttctagaac gegtttttta ttttttcttc acacacttg
```

<210> SEQ ID NO 85
<211> LENGTH: 53
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer HAPS-RhCHSpro3k-Fd
<400> SEQUENCE: }8

```
ccaagcttgg cgcgcettaa ttaaatttaa atcagcaaga gttgaagaaa tag
```

<210> SEQ ID NO 86
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer NS-RhCHSpro3k-Rv
<400> SEQUENCE: 86

```
aaagctagca ctagtcatct cggagaaggg tcg
 33
<210> SEQ ID NO 87
<211> LENGTH: 531
\(<212>\) TYPE: DNA
\(<213>\) ORGANISM: Chrysanthemum
<220> FEATURE:
<221> NAME/KEY: misc_feature
\(<223>\) OTHER INFORMATION: CmF3Hpro500
<220> FEATURE:
<221> NAME/KEY: primer_bind
\(<222\rangle\) LOCATION: (1) .. (21)
\(<220>\) FEATURE:
<221> NAME/KEY: primer_bind
\(<222>\) LOCATION: (507) .. (531)
\(<400\rangle\) SEQUENCE: 87
tactgttcga acctacaaag gaatatcaat acgagggctc aattattgtc tcggattcaa \(\quad 60\)
tgaattcaca aggtaaataa acgcggtact cttttcattg gtccttcgtt ttatttgttt 120
gacaattaat tgggatgget ggcgtgtata attctcaata catgtctgat ttaatatgtg 180
attggttgac attcatgtga aattaatata ctcattttat gattacaaag acccacgatg 240
tataattaat tccaatcttg tggaatggga tccattgtga accggtgcat gattgttacg 300
gtggggatta ctttgattg gttcagcatt atcatataac cccegttcaa cggatgcatg 360
ctacattggt acgtatacat atacgattca cgtgtggtag ttgataacta gcgcgatacg 420
\(\operatorname{cccc} a c c c c=a t a t t c t t c\) aatttctct acaaataccc atgccaacct tacgaaacac 480
tcattcccct ctactcatag acgcaccaag tgtgtgaaga aaaaataaaa a 531

The invention claimed is:
1. A method for producing a chrysanthemum plant containing delphinidin in the petals thereof comprising expressing flavonoid \(3^{\prime}, 5^{\prime}\)-hydroxylase (\(\mathrm{F}^{\prime} 5^{\prime} \mathrm{H}\) H) using a transcriptional regulatory region; wherein the chrysanthemum plant is transformed with an expression vector or expression cassette
comprising a gene encoding \(\mathrm{F}^{\prime} 5^{\prime} \mathrm{H}\) and the transcriptional regulatory region; wherein the \(\mathrm{F}^{\prime} 5^{\prime} \mathrm{H}\) is derived from bellflower (campanula), cineraria, verbena, or pansy; and 65 wherein the transcriptional regulatory region is
a nucleic acid containing the nucleotide sequence indicated in SEQ ID NO: 34 or SEQ ID NO: 87.
2. The method according to claim 1, wherein a translation enhancer derived from tobacco alcohol dehydrogenase is further used in addition to the transcriptional regulatory region.
3. The method according to claim 2 , wherein the translation enhancer is coupled directly to a start codon of the F3'5'H 5 gene.
4. A chrysanthemum plant, or a progeny, a vegetative proliferation product, a part, or a tissue thereof, transformed by the method according to claim 1.
5. A chrysanthemum plant, or a progeny, a vegetative pro- 10 liferation product, a part, or a tissue thereof according to claim 4, which is a cut flower.
6. A cut flower processed product made from the cut flower according to claim \(\mathbf{5}\), wherein said cut flower processed product comprises a F3'5'H gene sequence from bellflower (cam- 15 panula), cineraria, verbena, or pansy operably linked to a transcriptional regulatory sequence, and wherein the transcriptional regulatory region is
a nucleic acid containing the nucleotide sequence indicated in SEQ ID NO: 34 or SEQ ID NO: 87.
7. The method according to claim 1 , wherein the content of delphinidin in the petals is \(25 \%\) by weight or more of the total weight of anthocyanidins, and wherein a translation enhancer derived from tobacco alcohol dehydrogenase is further used in addition to the transcriptional regulatory region.
8. The method according to claim 3 , wherein the content of delphinidin in the petals is \(25 \%\) by weight or more of the total weight of anthocyanidins.```

